SUSTAINABLE FOREST MANAGEMENT PLAN 4

2007 ANNUAL REPORT

TFL 48

Final

Canadian Forest Products Ltd.

Chetwynd Division

PO Box 180

Chetwynd, BC V0C 1J0

Version 1.0 June 17, 2008

SUSTAINABLE FOREST MANAGEMENT PLAN 4

2007 ANNUAL REPORT

Canadian Forest Products Ltd.
Chetwynd Operations — TFL 48

Prepared by:

Don Rosen

Strategic Planning Coordinator

EXECUTIVE SUMMARY

As shown in the following Table 1 of the 54 Indicators 9 were not reported on this year as next reporting is 2010, of the remaining 45 indicators 42 or 93% met the targets while in 3 instances (7%) of the targets were not met.

Table 1: Summary of 2007 Performance

		Target	
Indicator	Met	Not Met	Not Reported (Next Date for Reporting)
2.1 Ecosystem Representation	✓		
2.2 Forest Types			2010
2.3 Late Seral Forest	✓		
2.4 Patch Size Distribution	✓		
2.5 Snags/Live Tree Retention	✓		
2.6 Coarse Woody Debris			2010
2.7 Average Minimum Width of RRZ and RMZ	✓		
2.8 Shrubs/Early Forest			2010
2.9 Wildlife Tree Patches	✓		
2.10 Habitat Supply for Species of Public Concern			2010
2.11 Species of Management Concern	✓		
2.12 Coniferous Seeds	✓		
2.13 Deciduous Seeds and Vegetative Material	✓		
2.14 Class A Parks, Ecological Reserves and LRMP Designated Protected Areas	✓		
2.15 Wildlife Habitat Areas, Ungulate Winter Ranges and Dunlevy Creek Management Plan	✓		
2.16 Forest Health	✓		
2.17 Proportion of Completed Forest Health Action Plans	✓		
2.18 Regeneration Declaration	✓		
2.19 Free Growing Stands	✓		
2.20 Permanent Access Corridors			2010
2.21 Site Index	✓		
2.22 AAC			
2.23 Soil Degradation			
2.24 Soil Disturbance Surveys	✓		
2.25 Use of Environmentally Friendly Lubricants	✓		
2.26 Spills Entering Waterbodies		✓	
2.27 Stream Crossing Quality Index	✓		
2.28 Action Plans for High Water Quality Concern Rating (WQCR)	✓		
2.29 Peak Flow Index	✓		
2.30 Watershed Reviews	✓		
2.31 Carbon Sequestration			2010
2.32 Ecosystem Carbon Storage (Mg) in the DFA			2010
2.33 Area of Forested Land			2010
2.34 Range Opportunities			
2.35 Maintenance of Visual Landscape Inventory	✓		
2.36 Proportion of Harvesting Consistent with Visual Quality Objective	✓		
2.37 Back Country Condition	✓		
2.38 Recreational Sites	✓		
2.39 Harvest Levels/Volumes	✓		

June 2008 i

		Target	
Indicator	Met	Not Met	Not Reported (Next Date for Reporting)
2.40 Waste	✓		
2.41 Harvest Method	✓		
2.42 Summer and Fall Deliveries	✓		
2.43 Local Employment	✓		
2.44 Community Donations		✓	
2.45 Consistency with Third Party Action Plans	✓		
2.46 Known Values and Uses Addressed in Operational Planning	✓		
2.47 Conformance to Elements Pertinent to Treaty Rights		✓	
2.48 LRMP Implementation Meetings Attended by Canfor	✓		
2.49 Public Advisory Committee	✓		
2.50 Public Advisory Committee Terms of Reference	✓		
2.51 Open Houses			N/A
2.52 Response to Public Inquiries	✓		
2.53 Distribution/Access to SFM Plan, Annual Reports and Audit Results	✓		
2.54 Spatial Forecasting and Analysis			2010
2.55 Currency of Vegetation Resource Inventory	✓		

ii June 2008

ACKNOWLEDGEMENTS

We would like to thank the Chetwynd Woodlands staff and BC Timber Sales (Dawson Creek) staff and Louisiana Pacific staff on behalf of Tembec for compiling or providing data.

We would also like to thank the Public Advisory Committee members and advisors for their continued input to the Sustainable Forest Management process and providing input on the draft document.

June 2008 iii

Table of Contents

EXE(CUTIVE	SUMMARY	İ
ACKI	NOWLE	DGEMENTS	iii
1	INTR	ODUCTION & OVERVIEW	1
	1.1	Overview	2
	1.2	Significant Changes	2
2	SFM	INDICATORS AND OBJECTIVES	3
	2.1	Ecosystem Representation	3
	2.2	Forest Types	4
	2.3	Late Seral Forest	4
	2.4	Patch Size Distribution	8
	2.5	Snags/Live Tree Retention	9
	2.6	Coarse Woody Debris	10
	2.7	Average Minimum Width of RRZ and RMZ	10
	2.8	Shrubs/Early Forest	11
	2.9	Wildlife Tree Patches	12
	2.10	Habitat Supply for Species of Public Concern	13
	2.11	Species of Management Concern	16
	2.12	Coniferous Seeds	
	2.13	Deciduous Seeds and Vegetative Material	17
	2.14	Class A Parks, Ecological Reserves and LRMP Designated Protected Areas	17
	2.15	Wildlife Habitat Areas, Ungulate Winter Ranges and Dunlevy Creek Management Plan	18
	2.16	Forest Health	20
	2.17	Proportion of Completed Forest Health Action Plans	21
	2.18	Regeneration Declaration	21
	2.19	Free Growing Stands	22
	2.20	Permanent Access Corridors	23
	2.21	Site Index	23
	2.22	AAC	25
	2.23	Soil Degradation	25
	2.24	Soil Disturbance Surveys	26
	2.25	Use of Environmentally Friendly Lubricants	26
	2.26	Spills Entering Waterbodies	26
	2.27	Stream Crossing Quality Index	27
	2.28	Action Plans for High Water Quality Concern Rating (WQCR)	29
	2.29	Peak Flow Index	30
	2.30	Watershed Reviews	31
	2.31	Carbon Sequestration	32
	2.32	Ecosystem Carbon Storage (Mg) in the DFA	34

2.33	Area of Forested Land	35
2.34	Range Opportunities	36
2.35	Maintenance of Visual Landscape Inventory	37
2.36	Proportion of Harvesting Consistent with Visual Quality Objective	37
2.37	Back Country Condition	38
2.38	Recreational Sites	40
2.39	Harvest Levels/Volumes	40
2.40	Waste	41
2.41	Harvest Method	41
2.42	Summer and Fall Deliveries	42
2.43	Local Employment	43
2.44	Community Donations	44
2.45	Consistency with Third Party Action Plans	45
2.46	Known Values and Uses Addressed in Operational Planning	45
2.47	Conformance to Elements Pertinent to Treaty Rights	46
2.48	LRMP Implementation Meetings Attended by Canfor	46
2.49	Public Advisory Committee	47
2.50	Public Advisory Committee Terms of Reference	47
2.51	Open Houses	48
2.52	Response to Public Inquiries	48
2.53	Distribution/Access to SFM Plan, Annual Reports and Audit Results	49
2.54	Spatial Forecasting and Analysis	49
2.55	Currency of Vegetation Resource Inventory	50

List of Tables

Table 1: Summary of 2007 Performance	I
Table 2: Status of Blocks where Rare Ecosystems Assessments conducted	3
Table 3: Forest Type Distribution Current and FDP Status and Target Ranges	4
Table 4: Current and Projected Harvest Status of Late Seral Forest – Deciduous	6
Table 5: Current and Projected Harvest Status of Late Seral Forest – Coniferous	7
Table 6: Early Patch Size Class Current and Projected	8
Table 7: Mature Patch Size Class Current and Projected	8
Table 8: Status of prescribed retention for blocks harvested in 2007	9
Table 9: Summary of Riparian Reserve and Management Zones in 2000-2007	11
Table 10: Proposed Shrub Habitat Targets, Current and FDP Condition	12
Table 11: Summary of WTP's in Areas Harvested Since 1995	12
Table 12: Proposed Blocks within UWR/WHA's	18
Table 13: Estimated MPB Incidence Changes	20
Table 14: Summary of Forest Health Issues 2000-2007	20
Table 15: Permanent Access Corridors in TFL 48 (Existing)	23
Table 16: Site Index by Leading Species for Free Growing Stands	24
Table 17: Annual Allowable Cut and Long-Term Harvest Level	25
Table 18: SCQI and Water Quality Concerns for Watersheds within TFL 48 – Sampling Completed 2001 to 2007	27
Table 19: Peak Flow Index Post Development Status	30
Table 20: Reductions to Land Base Due to Other Uses (Excluding Roads)	36
Table 21: AUM's on TFL48 in 2007	36
Table 22: Blocks Harvested in 2006 in Visual Zones	38
Table 23: Blocks Harvested in 2007 in Visual Zones	38
Table 24: Baseline Condition – ROS Inventory	39
Table 25: Current Condition – ROS Inventory Updated to June 2005	39
Table 26: Actual Recorded and Allowable Annual Cut Summary	40
Table 27: LRMP Meetings	46
Table 28: Public Advisory Committee Meetings	47
Table 29: Summary of Public Inquiries and Response for 2007	48

List of Figures

Figure 1:	Tree Farm Licence 48	1
Figure 2:	Moose Habitat Supply	13
Figure 3:	Elk Habitat Supply	13
Figure 4:	Caribou Habitat Supply	14
Figure 5:	Marten Habitat Supply	14
Figure 6:	Fisher Habitat Supply	15
Figure 7:	Grizzly Bear Habitat Supply	15
Figure 8:	Wolverine Habitat Supply	15
Figure 9:	Ungulate Winter Ranges Declared in 2006	19
Figure 10	: Regeneration/Free Growing Status by Year of Harvest Start	22
Figure 11	: An Example of Average C Sequestration Rates for a Natural Spruce Leading BWBS Mesic Site Stand (Forecast AU 5) and an Associated Managed Stand (Forecast AU m³)	32
Figure 12	: Carbon Sequestration (Mg C/year) within TFL 48 Over Time	33
Figure 13	: An Example of C Storage for a Natural Spruce Leading BWBS Mesic Site Stand (Forecast AU 5) and an Associated Managed Stand (Forecast AU m³)	34
Figure 14	: Total Ecosystem Carbon (Mg) Storage in the DFA Over Time	35
Figure 15	: Proportion of Conventional Harvest Systems Used 2007-2011	42
Figure 16	: Summer and Fall Deliveries	43
Figure 17	: Proportion of Dollars Spent on Local vs Non-Local Contractors	44

1 INTRODUCTION & OVERVIEW

Canadian Forest Products Ltd. (Canfor) achieved registration under the Canadian Standards Association CAN/CSA Z809-96 Sustainable Forest Management System for Tree Farm Licence (TFL) 48's (see Figure 1) forestry operations in July 2000, and re-registration in 2002. In 2005 the Sustainable Forest Management Plan 4 was updated to the CAN/CSA Z809-02 Sustainable Forest Management: Requirements and Guidance. In partial fulfillment of achieving registration, a public group — the Chetwynd Public Advisory Committee (PAC) — was formed at the beginning of 2000 to help Canfor identify quantifiable local-level values, objectives indicators and targets for sustainable forest management. The original indicators and targets identified by the PAC were detailed with associated forest management practices to achieve those targets in the Sustainable Forest Management Plan for Tree Farm Licence 48 (Canfor 2006). In 2006 BC Timber Sales (BCTS) joined the registration and a joint certificate was issued to Canfor and BCTS. The 2007 Annual Report is a summary report on the status of each indicator and provides revisions to several indicators, targets, or the way they are measured. The 2007 Annual Report is the eighth time annual reporting has been undertaken for SFMP's and the third for SFMP 4.

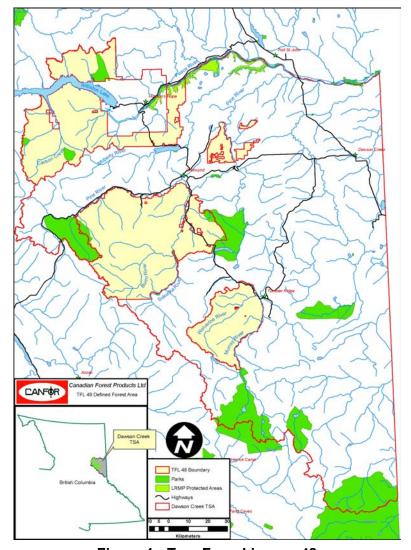


Figure 1: Tree Farm Licence 48

This report is prepared as an annual report required by the CSA standard and also serves as a TFL Annual Report. In this report, each Indicator is reiterated, and a brief status report is provided. For additional information on the Indicators and Objectives, or the practices involved, the reader should refer to Canfor's Sustainable Forest Management Plan 4 for Tree Farm Licence 48 (Canfor, 2006).

The Public Advisory Committee reviewed this report on June 19, 2008.

1.1 OVERVIEW

The format of the remainder of this document and the detailed status of each indicator are provided below. This document is subject to review by the Public Advisory Committee (PAC).

Information noted as SBFEP was collected and provided by BC Timber Sales staff at the Dawson Creek office of the Peace Forest District. Canfor then included this information into applicable indicator reporting. Information provided by Tembec for harvesting, road construction and silviculture activity was included into the applicable indicators.

1.2 SIGNIFICANT CHANGES

A significant development in the management of TFL 48 is that on December 5, 2007, due to continuing poor lumber markets and a high Canadian dollar, Canfor announced an indefinite closure of its sawmill in Chetwynd once existing log inventories were utilized and finished products shipped. This is the main destination of logs from TFL 48 and as such activities will be at considerably lesser scale than what normally would occur.

Canfor is committed to maintaining TFL 48 in good standing and is continuing to manage all obligations such as silviculture, roads, and SFMP certification during this economic downturn.

2 SFM INDICATORS AND OBJECTIVES

2.1 ECOSYSTEM REPRESENTATION

Indicator Statement	Target Statement	
Proportion of rare ecosystem groups (3, 6, 7, 10, 21) reserved from harvest		
SFM Objective: We will conserve or restore ecosystem diversity within the natural range of variation within DFA over time.		
We will conserve genetic diversity of both wildlife ar	nd plant species	

STATUS AND COMMENTS:

Blocks are assessed annually as layout is completed to determine the presence of rare ecosystems. The following blocks had layout completed in 2007 and assessments completed for determining the presence or absence of rare ecosystems as indicated in the following Table 2:

Table 2: Status of Blocks where Rare Ecosystems Assessments conducted

Licence	Cut Block ID	Year	Comments
		Assessed	
TFL48	T4118	2008	Review of SP indicates no Rare SS in block.
TFL48	T4141	2008	No Rare sited identified in SP Eco.
TFL48	T4146	2008	Review of SP indicates no rare site series.
TFL48	T4148	2008	SP reviewed and no rare site series found. Rare sites indicated next to block boundary and avoided during layout.
TFL48	T4151	2007	Areas indicated on maps confirmed not to be rare site series in field. Block adjusted during layout to avoid rare site series.
TFL48	T4152	2008	SP reviewed and no rare site series present.
TFL48	T4155	2007	Rare site adjacent to block. Boundary located to avoid. Area of overlap with mapping field confirmed not to be rare site series.
TFL48	T4162	2008	Review of SP indicates no rare site series present.
TFL48	T5027	2007	Review of SP indicates no rare site series.
TFL48	T5033	2007	Review of SP indicates no rare site series.
TFL48	T5040	2007	Rare site series identified and layout contractor directed to cut out sensitive ecosystem.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.2 FOREST TYPES

Indicator Statement	Target Statement
Percent distribution of forest type (deciduous, deciduous mixed wood, conifer mixed wood, conifer) >20 years old across DFA	100% of forest type groups will be within the target range (Conifer - 75-85%, Conifer Mixedwood - 4-6%, Deciduous - 9-15%, Deciduous Mixedwood - 2-4%)

SFM Objective:

We will conserve or restore ecosystem diversity within the natural range of variation within the DFA over time.

We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbance and stress.

We will sustain the natural range of ecosystem productivity to support naturally occurring species.

STATUS AND COMMENTS:

This indicator's status was reported in SFMP 4 and will not be reported on again until 2010. The following Table 3 shows the status as reported in SFMP 4.

Table 3: Forest Type Distribution Current and FDP Status and Target Ranges

Forest Type	MP 3 % ¹	2005	%	2010	%	Target Range
Coniferous	80%	407,906	80%	413,252	80%	75-85%
Mixed - Coniferous	5%	26,477	5%	26,858	5%	4-6%
Mixed - Deciduous	3%	17,723	3%	17,876	3%	2-4%
Deciduous	12%	62,437	12%	63,394	12%	9-15%
Grand Total		514,543	100%	521,380	100%	

REVISIONS:

No revisions are suggested for this indicator or objective.

2.3 LATE SERAL FOREST

Indicator Statement	Target Statement								
The minimum acceptable proportion (%) of late seral forest by Natural Disturbance Unit (NDU) and NDU by BEC	The minimum proportion (%) of late seral forest by NDU and NDU by BEC as shown in (SFMP 4 Table 11)								
SFM Objective:									
We will conserve or restore ecosystem diversity with	hin the natural range of variation within DFA over								
time.									
We will conserve genetic diversity of both wildlife and plant species.									

MP 3 data is shown as a percent due to a slight change in the way this indicator is reported. The indicator has change to reporting only stands greater than 20 years old and there have been some changes to the area of TFL 48.

STATUS AND COMMENTS:

As part of the annual reporting an assessment of the impact of the existing and proposed harvest was made on the late seral targets for TFL 48. As we have shifted from completing Forest Development Plans (FDP) under the Forest Practices Code of BC Act to completing Forest Stewardship Plans (FSP) under the Forest and Range Practices Act, the way proposed harvest areas are defined has changed quite significantly. Under a FSP the proposed harvest area is normally quite large to solicit input on concerns or values in these areas prior to conducting fieldwork. As the shape and size is much larger than the actual completed or proposed harvest area it is inappropriate to use these areas to project impacts on values such as late seral forest. As such only proposed harvesting where fieldwork has been completed and the actual harvest area defined is used to project the future seral impacts. For this annual report the current ha is based on ages being projected to 2008 and the projected ages is to 2010.

The following provides a summary of the results:

NDU/BEC Targets – All targets are met for the Boreal Plains and Boreal Foothills – Valley Deciduous units (See Table 4).

Boreal Plains Conifer (See Table 5) – Targets are met at the BEC variant level however the targets are not met at the NDU level, although the deficit has decreased from 2,799 ha to 1,230 ha through recruitment. There are over 29,000 ha of mature to recruit from.

Boreal Foothills – Valley – Conifer – Targets are met at the BEC variant level and at the NDU level.

Boreal Foothills – Mountain – Targets are met at the BEC variant level and at the NDU level by the end of the projected harvesting.

Omineca – Valley – Targets are met at the BEC variant and NDU level for this unit. There is no new proposed harvesting in this amendment.

Omineca – Mountain – Targets are met at the BEC variant level but not at the NDU level. While this reporting shows an increase in the deficit there has actually been a steady increase in the amount of late seral from 30% to 35% in 2020 after proposed harvesting. This is due to this unit being very small and the forest continuing to age while no harvesting has taken place and there still being proposed harvesting for CP 332. This is a CAT A approved permit from the 2002 FDP. Harvesting has been deferred from this area and shifted more MPB priority areas. The blocks have remained in the analysis, as the permit is predominately pine.

Wet Mountain – Targets are met at the BEC variant level but not at the NDU level. There has been an increase in the deficit from 20,493 ha to 20,604 ha. There are a total of 665 ha of new harvesting proposed in the wet mountains. The target for this unit is 84% 141 years old or older. It is projected that the full targets will be met within 80 years. The harvesting proposed in this amendment will not jeopardize the achievement of this target as there are 28,026 ha of recruitment available in the lower 2 age groups. The proposed harvesting in this unit is consistent with SFMP 4 for TFL 48 section 3.3 indicator, target and acceptable variance.

REVISIONS:

No revisions are suggested for this indicator or objective.

Table 4: Current and Projected Harvest Status of Late Seral Forest – Deciduous

			<4	0			40-	100		101+						Total	141+	Years to
NDU	BEC	Current ha	% F	Projected ha	%	Current ha	%	Projected ha	%	Current ha	%	Surplus (Deficit)	Projected ha	%	Surplus (Deficit)	Forested ha	Target	Meet Target
	BWBSmw 1	2,769	7%	3,248	9%	21,120	56%	20,557	54%	13,974	37%	10,188	14,058	37%	10,272	37,863	10%	
Boreal Plains - Deciduous	BWBSwk 1	87	2%	85	2%	3,051	77%	3,054	77%	843	21%	445	841	21%	443	3,981	10%	
	ESSFmv 2	11	2%	11	2%	350	80%	350	80%	75	17%	31	75	17%	31	436	10%	
	SBS wk 2		0%		0%	11	28%	11	28%	29	72%	N/A	29	72%	N/A	40	N/A	
Boreal Plains - Deciduous T	otal	2,867	7%	3,343	8%	24,532	58%	23,972	57%	14,921	35%	10,689	15,004	35%	10,772	42,319	10%	0
	BWBSmw 1	2,283	10%	1,989	9%	10,788	49%	10,742	48%	9,080	41%	6,865	9,421	43%	7,206	22,152	10%	
Boreal Foothills - Valley -	BWBSwk 1	28	2%	28	2%	1,065	72%	1,065	72%	380	26%	233	380	26%	233	1,473	10%	
Deciduous	BWBSwk 2	184	4%	140	3%	2,088	41%	2,072	41%	2,831	55%	2,321	2,891	57%	2,380	5,103	10%	
	SBS wk 2	408	5%	513	6%	5,554	65%	5,280	62%	2,619	31%	1,761	2,788	32%	1,930	8,581	10%	
Boreal Foothills - Valley - De	eciduous Total	2,902	8%	2,670	7%	19,496	52%	19,159	51%	14,910	40%	11,179	15,479	41%	11,749	37,309	10%	0
Grand Total		5,769	7%	6,014	8%	44,028	55%	43,131	54%	29,831	37%		30,483	38%		79,628		

Table 5: Current and Projected Harvest Status of Late Seral Forest – Coniferous

			<4	0		40-100			101-	-140		141+						141+	Years to			
NDU	BEC	Current ha	%	Projecte d ha	%	Current ha	%	Projecte d ha	%	Current ha	%	Projecte d ha	%	Current ha	%	Surplus (Deficit)	Projecte d ha	%	Surplus (Deficit)	Total ha	Target	Meet Target
	BWBSmw 1	7,731	24%	8,210	25%	10,417	32%	9,788	30%	11,575	36%	11,241	35%	2,739	8%	1,116	3,222	10%	1,599	32,462	5%	
Boreal Plains - Conifer	BWBSwk 1	2,132	9%	2,324	10%	6,535	27%	6,051	25%	12,490	53%	12,069	51%	2,613	11%	1,424	3,325	14%	2,137	23,770	5%	
Borear rains - Conner	ESSFmv 2	446	3%	446	3%	2,212	17%	2,003	15%	6,714	52%	6,551	50%	3,643	28%	2,992	4,015	31%	3,365	13,015	5%	
	SBS wk 2	0	0%	0	0%	178	89%	178	89%	10	5%	10	5%	13	6%	N/A	13	6%	N/A	201	N/A	
Boreal Plains - Conifer Total		10,308	15%	10,980	16%	19,342	28%	18,021	26%	30,789	44%	29,871	43%	9,008	13%	(2,799)	10,576	15%	(1,230)	69,447	17%	20
	BWBSmw 1	4,308	14%	4,322	14%	8,627	27%	8,397	26%	11,791	37%	11,280	35%	7,123	22%	4,894	7,850	25%	5,620	31,849	7%	
Boreal Foothills - Valley -	BWBSwk 1	650	12%	734	14%	1,652	30%	1,628	30%	1,373	25%	933	17%	1,752	32%	1,372	2,132	39%	1,752	5,427	7%	
Conifer	BWBSwk 2	272	4%	267	4%	3,542	48%	3,542	48%	2,808	38%	2,798	38%	823	11%	301	837	11%	316	7,444	7%	
	SBS wk 2	13,577	16%	15,306	18%	23,794	29%	21,571	26%	22,125	27%	22,088	27%	23,735	29%	17,909	24,266	29%	18,440	83,232	7%	
Boreal Foothills - Valley - C	Conifer Total	18,807	15%	20,630	16%	37,615	29%	35,139	27%	38,097	30%	37,099	29%	33,433	26%	4,004	35,085	27%	5,656	127,953	23%	10
	ESSFmv 2	7,947	7%	8,515	8%	27,593	26%	25,662	24%	29,744	28%	30,002	28%	40,943	39%	30,320	42,047	40%	31,424	106,227	10%	
Boreal Foothills - Mountain	ESSFmv 4	339	3%	262	2%	5,600	48%	5,355	46%	4,236	36%	4,407	38%	1,563	13%	389	1,714	15%	540	11,738	10%	
Boroar r Cournillo - Moaritain	ESSFwc 3	604	2%	604	2%	5,810	24%	5,739	23%	10,509	43%	9,823	40%	7,605	31%	5,152	8,361	34%	5,909	24,527	10%	
	ESSFwk 2	3,063	12%	3,796	14%	7,294	28%	7,042	27%	8,913	34%	8,667	33%	7,135	27%	4,495	6,900	26%	4,259	26,406	10%	
Boreal Foothills - Mountain	Total	11,953	7%	13,177	8%	46,297	27%	43,798	26%	53,402	32%	52,900	31%	57,245	34%	1,509	59,022	35%	3,286	168,897	33%	10
Omineca - Valley	BWBSmw 1		0%		0%	10	36%	10	36%	17	64%	17	64%		0%	N/A		0%	N/A	27	N/A	
- Valley	SBS wk 2	668	11%	642	10%	561	9%	444	7%	3,391	55%	3,405	55%	1,557	25%	1,125	1,687	27%	1,255	6,177	7%	
Omineca - Valley Total		668	11%	642	10%	570	9%	453	7%	3,409	55%	3,422	55%	1,557	25%	130	1,687	27%	260	6,204	23%	0
Omineca - Mountain	ESSFmv 2	789	6%	986	7%	1,463	11%	1,241	9%	6,249	47%	6,364	48%	4,685	36%	2,443	4,595	35%	2,354	13,186	17%	
Omineca - Mountain Total		789	6%	986	7%	1,463	11%	1,241	9%	6,249	47%	6,364	48%	4,685	36%	(2,964)	4,595	35%	(3,053)	13,186	58%	40
	ESSFmv 2	374	2%	555	3%	3,318	20%	3,131	19%	3,070	19%	3,253	20%	9,494	58%	5,430	9,319	57%	5,254	16,257	25%	
Wet Mountain	ESSFwc 3	421	1%	426	1%	4,574	14%	4,432	14%	6,333	20%	6,153	19%	21,018	65%	12,932	21,336	66%	13,250	32,347	25%	
TTO MOUNTAIN	ESSFwk 2	2,876	11%	3,066	12%	3,646	14%	3,289	13%	2,528	10%	2,775	11%	17,190	66%	10,630	17,109	65%	10,550	26,240	25%	
	SBS wk 2	2,144	19%	2,354	20%	3,221	28%	2,895	25%	1,811	16%	2,100	18%	4,380	38%	1,491	4,208	36%	1,319	11,556	25%	
Wet Mountain Total		5,815	7%	6,401	7%	14,760	17%	13,747	16%	13,742	16%	14,280	17%	52,083	60%	(20,493)	51,972	60%	(20,604)	86,400	84%	80
Grand Total		48,340	10%	52,816	11%	120,048	25%	112,399	24%	145,689	31%	143,936	30%	158,010	33%		162,938	35%		472,088	100%	

Source: VRI - 2004 and Planned and Laid out harvest areas

2.4 PATCH SIZE DISTRIBUTION

Indicator Statement	Target Statement
Percent area by Patch Size Class (0-50, 51-100 and >100 ha) by Natural Disturbance Unit (NDU) by early or mature and proportion of mature interior forest condition.	Targets by Patch Size Class by NDU by early or mature are shown in SFMP 4 Table 14
SFM Objective:	
We will conserve or restore ecosystem diversity within	the natural range of variation within DFA over

STATUS AND COMMENTS:

time.

The information shown in Table 6 and Table 7 show the current and projected status of this indicator. The future or projected information is different from how this information was previously presented. Due to the nature of how proposed harvest areas are shown in a Forest Stewardship Plan (FSP) there is significant difference between what is initially proposed and what may ultimately be proposed for harvest. From this point forward the projected values are based upon the completed field layout. As such there is less information to project versus the current status than what was reported in previous reporting of this information. The early and mature forest patch size targets and proportion of mature interior forest are all being met after the proposed development.

Table 6: Early Patch Size Class Current and Projected

		Patch Class (ha)														
NDU		<50				50-100				100+					Total Current	Total Projected
	Current	%	Proj	%	Current	%	Proj	%	Target	Current	t %	Proj	%	Target		
Boreal Plains	1,965	14%	1,932	13%	1,087	8%	1,009	7%	<15%	10,614	78%	11,944	80%	>50%	13,666	14,885
Boreal Foothills/Omineca	7,121	20%	6,259	16%	6,328	18%	5,659	15%	<20%	22,407	62%	26,814	69%	>40%	35,856	38,732
Wet Mountain	1,272	22%	1,268	20%	1,587	27%	1,198	19%	<25%	2,953	51%	3,932	61%	>60%	5,812	6,398
Grand Total	10,358	19%	9,459	16%	9,002	16%	7,866	13%		35,974	65%	42,690	71%		55,334	60,015

Table 7: Mature Patch Size Class Current and Projected

	,				Patch Size Class (ha)								
NDU	Current /	<50		50-100		100+		Target	Grand Total	Interior Forest %	Forest		
NDO	Projected	ha	%	ha	%	ha	%	rarget		roiest %	Target		
Boreal Plains	Current	5,323	9%	2,408	4%	48,870	86%	>70%	56,601	68%	>30%		
Doreal Flains	Projected	5,697	10%	2,356	4%	49,267	86%	>70%	57,320	66%	>30%		
Boreal	Current	14,554	7%	4,859	2%	199,966	91%	>80%	219,380	73%	>35%		
Foothills/Omineca	Projected	14,093	6%	4,958	2%	203,451	91%	>80%	222,502	72%	>35%		
Wet Mountain	Current	2,769	4%	480	1%	66,552	95%	>85%	69,801	71%	>60%		
VVCI WIOUIII.	Projected	2,666	4%	509	1%	67,230	95%	>85%	70,404	70%	>60%		

REVISIONS:

No revisions are suggested for this indicator or objective.

2.5 SNAGS/LIVE TREE RETENTION

Indicator Statement	Target Statement
Number of snags and/or live trees (>17.5cm dbh) per ha on prescribed areas	Retain annually an average of at least 2 snags and/or live trees (>17.5 cm dbh) per hectare on prescribed areas
CEM Objectives	

SFM Objective:

We will sustain sufficient and appropriately distributed suitable habitat elements to maintain native species richness.

We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbance and stress.

STATUS AND COMMENTS:

There were 26 blocks on which harvesting was started in 2007 of these 12% of the area was laid out in the field prior to this indicator being adopted, and 3% was in MPB salvage blocks where retention was not required. 51% of the total area harvested had retention prescribed.

Table 8: Status of prescribed retention for blocks harvested in 2007

	Cable Ha	arvest	C	onventio	nal Harvest			
	Clear	Cut	Clear	Cut	Retenti	on	Total Area (ha)	Strategy Implemented Correctly
Block ID	Area (ha)	%	Area (ha)	%	Area (ha)	%		
B0065		0%	7	100%		0%	7	MPB Salvage
C0023		0%	10	100%		0%	10	MPB Salvage
C0024		0%	10	100%		0%	10	MPB Salvage
C0026		0%	15	100%		0%	15	MPB Salvage
C0027		0%	8	100%		0%	8	MPB Salvage
T3008		0%	3	100%		0%	3	Pre 2005 Layout
T3009		0%	38	100%		0%	38	Pre 2005 Layout
T3011		0%	76	100%		0%	76	Pre 2005 Layout
T3012		0%	19	100%		0%	19	Pre 2005 Layout
T3013		0%	15	100%		0%	15	Pre 2005 Layout
T3014		0%	12	100%		0%	12	Pre 2005 Layout
T3015		0%	48	100%		0%	48	Pre 2005 Layout
T4107	67	73%	24	27%		0%	91	OK (20% WTP)
T4121		0%	15	39%	24	61%	39	OK
T4126		0%	98	100%		0%	98	OK (not target site series)
T4135	72	85%		0%	13	15%	85	OK
T4138	102	75%	35	25%		0%	137	OK (55% WTP)
T4140	48	13%		0%	327	87%	375	OK
T4149		0%	35	55%	28	45%	63	OK (not target site series)
T4150		0%		0%	154	100%	154	OK
T5023	103	42%		0%	143	58%	245	OK
T5024		0%		0%	18	100%	18	OK
T5025		0%		0%	27	100%	27	OK
T5027		0%	34	100%		0%	34	OK (not target site series)
T5033		0%		0%	80	100%	80	OK
T5034		0%		0%	115	100%	115	OK
Grand Total	391	21%	501	28%	929	51%	1,821	

REVISIONS:

No revisions are suggested for this indicator or objective.

2.6 COARSE WOODY DEBRIS

Indicator Statement	Target Statement
Average Coarse Woody debris size and m ³ /ha on blocks harvested on the TFL since Jan 1, 2004	Average retention level over the TFL since Jan 1, 2004 will be at least 92 m³/ha of which a minimum of 46 m³/ha will be greater than 17.5cm in diameter

SFM Objective:

We will sustain sufficient and appropriately distributed suitable habitat elements to maintain native species richness.

We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbance and stress.

STATUS AND COMMENTS:

Currently 9 of 23 plots have been established on TFL 48. All samples must be completed for the 2010 reporting. Progress to date for the 9 samples shows an average of 112 m³/ha of which 58 m³/ha is greater than 17.5 cm.

Next reporting on the status of this indicator will be in 2010.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.7 AVERAGE MINIMUM WIDTH OF RRZ AND RMZ

Indicator Statement	Target Statement									
Average minimum width of retention by Riparian Reserve Zone or Riparian Management Zone by appropriate stream, lake or wetland classification within cutblocks	We will meet or exceed the regulatory retention widths by Riparian Reserve Zone by appropriate stream, lake or wetland classification within cutblocks									
SFM Objective:										
For have representative areas of naturally occurring and important ecosystems, and rare physical environments protected at both the broad and site specific levels across or adjacent to the DFA										

STATUS AND COMMENTS:

We will maintain water quality and quantity.

The following table (Table 9) shows the summary of riparian reserve and management zones for 2007 as well as the cumulative average from 2000 to 2007. The targets have been met in 2007 and all previous years. It should be noted that where the minimum riparian management area (RMA) is not met this is due to more area being contained within the reserve zone (RRZ).

Table 9: Summary of Riparian Reserve and Management Zones in 2000-2007

Year	Stream, Wetland or Lake Class	Total Stream Length (m) ^b	RRZ – Required Width (m) ^c	RRZ-Actual Width (m) °	RMZ Required Width (m) ^c	RMZ – Actual Width (m) ^c	Total RMA Required (m)	Actual (m)
	S1 (n=1)	2,281	50	160.5	20	-	70	160.5
	S2 (n=1)	2,156	30	103.4	20	-	50	103.4
	S3 (n=6)	8,069	20	26.7	20	46.2	40	72.8
2007	S4 (n=3)	2,979	0	4.0	30	29.2	30	33.2
2007	S5 (n=3)	2,929	0	9.7	30	87.1	30	96.8
	S6 (n=34)	28,451	0	3.3	20	25.7	20	29.0
	W3 (n=1)	2,849	0	3.3	30	29.3	30	32.5
	W5 (n=1)	673	10	27.3	40	25.8	50	53.1
	S1	30,425	50	78.4	20	5.4	70	83.8
	S2	15,240	30	76.5	20	11.9	50	88.4
	S3	31,654	20	53.5	20	15.6	40	69.1
Average	S4	16,993	0	8.6	30	24.8	30	33.3
2000 to 2007	S5	26,314	0	27.4	30	21.1	30	48.6
	S6	235,133	0	6.7	20	18.8	20	25.5
	W3	3,231	0	6.4	30	25.9	30	32.2
	W5	673	10	27.3	40	25.8	50	53.1

a Channel widths for S1 streams are >20m, <100m.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.8 SHRUBS/EARLY FOREST

Indicator Statement	Target Statement		
The minimum proportion of shrub habitat (%) by Natural Disturbance Unit	Each Natural Disturbance Unit will meet or exceed the baseline target (%) proportion of shrub habitat as indicated in Table 10		
SFM Objective: We will sustain sufficient and appropriately distributed habitat elements to maintain native species richness.			

STATUS AND COMMENTS:

The following table (Table 10) indicates the current and post FDP condition of shrub habitat within the DFA as reported in the 2005 SFMP Annual Report. This indicator was changed in the 2005 Annual Report and will next be reported on in SFMP 5.

b Streams that flow through, rather than adjacent to a block have had their lengths doubled to account for the application of RMA's to both sides. Therefore true stream length is less than reported in this table.

c RRZ and RMZ widths are applied to a single side of a stream. If stream flows through the block the length has been doubled (see footnote b) but the widths are not doubled.

Table 10: Proposed Shrub Habitat Targets, Current and FDP Condition

		Total NDU	2005 Shrub		2010 Shrub		Baseline
NDU	NDU Subunit	Area	На	%	Ha	%	Target %
Boreal Plains		120,891	15,762	13%	21,507	18%	14%
Boreal Foothills	Valley	178,225	25,245	14%	30,653	17%	12%
Borear Footinis	Mountain	205,406	20,936	10%	24,540	12%	11%
Omineca	Valley	6,504	727	11%	722	11%	7%
Onlineca	Mountain	15,031	1,277	8%	1,705	11%	10%
Wet Mountain		117,618	12,634	11%	14,919	13%	7%
Grand Total		643,676	76,581	12%	94,045	15%	

REVISIONS:

No revisions are suggested for this indicator or objective.

2.9 WILDLIFE TREE PATCHES

Indicator Statement	Target Statement			
Cumulative wildlife tree patch percentage in blocks harvested since 1995 by BEC sub zone	Cumulative wildlife tree patch % will be at least 8% by BEC sub zone			
SFM Objective: We will sustain sufficient and appropriately distributed suitable habitat elements to maintain native				

We will sustain sufficient and appropriately distributed suitable habitat elements to maintain native species richness.

We will sustain a natural range of variability in ecosystem function, composition and structure, which allows ecosystems to recover from disturbance and stress.

STATUS AND COMMENTS:

The table below summarizes the current status for WTP retention levels for blocks on which harvesting began since 1995 and to the end of 2007. The WTP retention levels exceed the target in all subzones except the ESSFwc3, however 75% or 539 ha of the 714 ha under prescription have been harvested with an irregular shelterwood retention system. Typically 55% of the area is retained between the trails so 55% of the 539 ha is 296 ha plus the 39 ha of WTP prescribed is a total of 335 ha of retention or 47% of the total area under prescription.

Table 11: Summary of WTP's in Areas Harvested Since 1995

BEC Sub Zone	Total Area Under Prescription	WTP Area	WTP %
BWBSmw	8,407	1,322	16%
BWBSwk	1,567	272	17%
ESSFmv	5,726	626	11%
ESSFwc	714	39	5%
ESSFwk	4,270	406	10%
SBSwk	9,015	1,425	16%
Grand Total	29,700	4,090	14%

REVISIONS:

No revisions are suggested for this indicator or objective.

2.10 HABITAT SUPPLY FOR SPECIES OF PUBLIC CONCERN

Indicator Statement	Target Statement		
Habitat supply for species of public interest (grizzly bear, wolverine, marten, fisher, elk, moose, caribou)	When habitat supply decreases by 20% over time beyond the natural range of variation baseline for species of public interest, stand level management strategies will be developed within one year		
SFM Objective:			
We will sustain sufficient and appropriately distribution species richness.	uted suitable habitat elements to maintain native		

STATUS AND COMMENTS:

This indicator was first reported on in 2005 in the Draft SFMP 4. When the final analysis was completed in support of the timber supply analysis this indicator was reassessed. The information presented in the following charts is also included in the proposed SFMP 4. Next reporting of this indicator will be done in conjunction with SFMP 5.

Moose was modeled for the summer feeding period. TFL 48 represents excellent moose habitat with over 340,000 ha classified in very high, high and moderate categories of habitat supply.

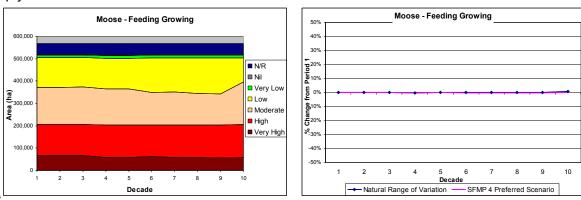


Figure 2: Moose Habitat Supply

Elk habitat was modeled as summer feeding habitat. TFL 48 represents excellent elk habitat with over 230,000 ha classified in very high, high and moderate categories of habitat supply.

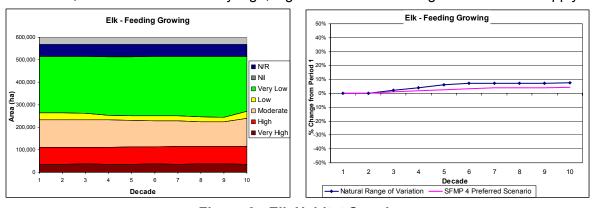


Figure 3: Elk Habitat Supply

Caribou was modeled for both late and early winter habitat types. In contrast to moose and elk there is comparatively little very high, high and moderate habitat for caribou, approximately 15,000 ha of early winter. (This is likely underrepresented with the current model.) Late winter habitat trends to a significantly less amount in the preferred scenario versus the natural range of variation baseline.

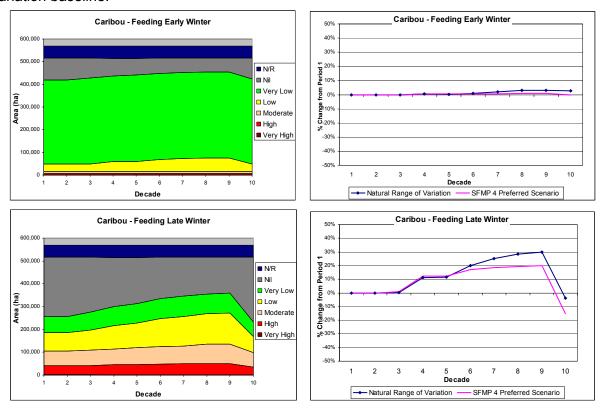


Figure 4: Caribou Habitat Supply

Marten habitat was modeled as general winter habitat. TFL 48 has a large amount of habitat (over 250,000 ha) modeled as very high, high and moderate. While habitat steadily declines over the 100 year simulation the preferred scenario has less of a decline than the natural range of variation simulation.

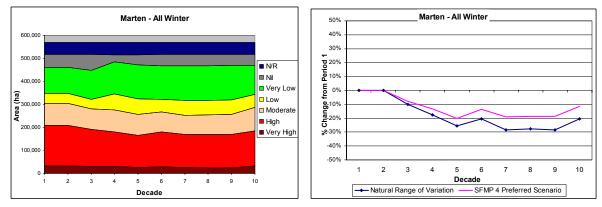


Figure 5: Marten Habitat Supply

Fisher habitat was modeled as general winter habitat. TFL 48 represents a large area of very high, high and moderate habitat with over 196,000 ha classified in these categories.

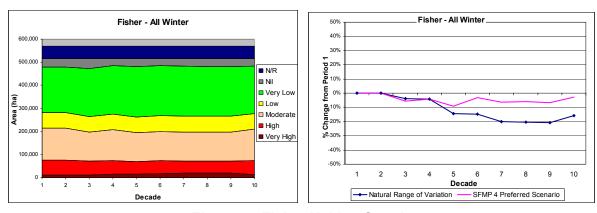


Figure 6: Fisher Habitat Supply

Grizzly bear habitat was modeled as spring feeding habitat. TFL 48 has a moderate amount of very high, high and moderate grizzly bear habitat with over 111,000 ha classified in these categories.

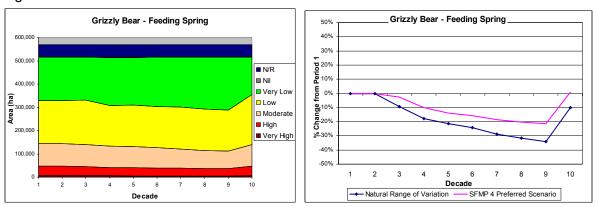


Figure 7: Grizzly Bear Habitat Supply

Wolverine habitat was modeled as winter feeding habitat. TFL 48 represents an excellent area for wolverine with over 440,000 ha modeled as high and moderate habitat quality. Again while the trend is for a decline in the overall amount of high quality habitat the preferred scenario shows less of a decline than the natural range of variation.

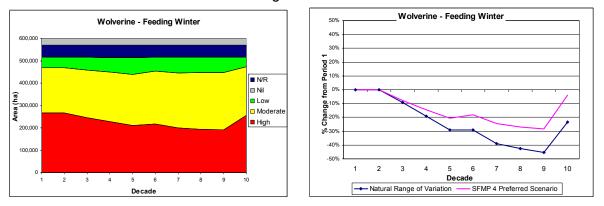


Figure 8: Wolverine Habitat Supply

REVISIONS:

No revisions are suggested for this indicator or objective.

2.11 SPECIES OF MANAGEMENT CONCERN

Indicator Statement	Target Statement	
Percent consistency with management strategies for species of management concern	On an annual basis, 100% of the management strategies for species of management concern are consistently being implemented as scheduled	
SFM Objective: We will maintain sufficient habitats for species at risk.		

STATUS AND COMMENTS:

The implementation strategy for this indicator was to implement stand level management guidelines on all areas where layout was initiated after October 31, 2005. In 2006 there were 18 of 18 or 100% of blocks, which considered the management strategies for species of management concern.

Canfor Chetwynd Division, in partnership with academia and the provincial government, is developing a new approach for identifying species of potential conservation concern based on stewardship responsibility, trend, threat and vulnerability (Fred Bunnell, pers comm June 23, 2006). The progress on the process to identify the species of conservation concern for TFL48 is as follows:

- 1. List all terrestrial vertebrates, vascular plants and freshwater fish in TFL 48 (complete);
- 2. Extract species of conservation concern based on stewardship responsibility, trend, threat and vulnerability (Squires 2005) (draft completed, not yet reviewed or finalized);
- 3. Determine which species are forest-dwelling based on previous list (complete);
- 4. Determine which species are sensitive to forest practices based on the previous list; and (complete)
- Determine if the habitat needs of the species that are sensitive to forest practices are adequately addressed by coarse (i.e., ecosystem representation) and/or medium (i.e., retention of habitat elements) filters. If not, fine scale management strategies will be developed.

It is anticipated that step 5 will be completed and fully implemented in the 2008 field season.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.12 CONIFEROUS SEEDS

Indicator Statement	Target Statement	
The proportion of seeds for coniferous species collected and seedlings planted in accordance with the regulation	All coniferous seeds will be collected and seedlings will be planted in accordance with the regulations	
SFM Objectives: Conserve genetic diversity of tree stock.		

STATUS AND COMMENTS:

All (100%) seedlots grown and planted within the DFA are registered in accordance with the Forest Planning and Practices Regulation and the Chief Forester's Seed Use Standards effective April 1, 2005.

All seeds have been registered with and tracked by Tree Improvement Branch of the Ministry of Forests and Range.

In 2007 there were a total of 3,228,304 trees planted on TFL 48 of which BCTS and Canfor planted 288,768 and 2,939,536 respectively. In 2007 all coniferous seeds were collected and seedlings were planted in accordance with the regulations (The Tree Cone, Seed and Vegetative Material Regulation (BC Reg 164/95)).

REVISIONS:

No revisions are suggested for this indicator or objective.

2.13 DECIDUOUS SEEDS AND VEGETATIVE MATERIAL

Indicator Statement	Target Statement	
The proportion of seed or vegetative material for deciduous species collected and planted in accordance with the regulation	All deciduous species will be collected and planted in accordance with the regulations	
SFM Objectives: We will conserve genetic diversity of tree stock.		

STATUS AND COMMENTS:

Canfor has not planted any deciduous seedlings or vegetative propagates on TFL 48. Any (100%) seedlots grown or planted within TFL 48 will be registered in accordance with the Forest Planning and Practices Regulation and the Chief Forester's Seed Use Standards effective April 1, 2005.

All seeds will be registered with and tracked by Tree Improvement Branch of the Ministry of Forests and Range.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.14 CLASS A PARKS, ECOLOGICAL RESERVES AND LRMP DESIGNATED PROTECTED AREAS

Indicator Statement	Target Statement	
Hectares of forestry related harvesting or road construction within Class A parks, protected areas, ecological reserves and LRMP designated protected areas	Zero hectares of forestry related harvesting or road construction within Class A parks, protected areas, ecological reserves or LRMP designated protected areas	
SFM Objective: We will implement management strategies appropriate to the long-term maintenance of protected areas and sites of special biological significance.		

STATUS AND COMMENTS:

In 2007 there was no harvesting or road construction within Class A parks, protected areas, ecological reserves or LRMP designated protected areas.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.15 WILDLIFE HABITAT AREAS, UNGULATE WINTER RANGES AND DUNLEVY CREEK MANAGEMENT PLAN

Indicator Statement	Target Statement	
Proportion of activities consistent with objectives of Wildlife Habitat Areas (WHA), Ungulate Winter Ranges (UWR), and Dunlevy Creek Management Plan	All forest management activities will be consistent with objectives of Wildlife Habitat Areas (WHA), Ungulate Winter Ranges (UWR), and Dunlevy Creek Management Plan	
SFM Objective: We will implement management strategies appropriate to the long-term maintenance of protected areas and sites of special biological significance.		

STATUS AND COMMENTS:

In 2007 there were no activities within UWR's, WHA's, or the Dunlevy Creek Management Plan area. This was consistent with the objectives.

In conjunction with the Ministry of Environment (MoE) Canfor worked to develop Ungulate Winter Ranges for Caribou and Mountain Goat within TFL 48. These areas were declared under the Forest and Range Practices Act and Government Actions Regulation on October 22, 2006 (those UWR's labeled u-9-002 on Figure 9). Canfor is continuing to work with the MoE on WHA's throughout the TFL as well as formalizing the UWR's and WHA's located in the Dunlevy area of TFL 48.

The following Table 12 shows those blocks that are within the UWR's or WHA's. These blocks will be assessed to ensure they are consistent with the objectives for the applicable UWR or WHA prior to harvesting.

Table 12: Proposed Blocks within UWR/WHA's

LICENSE	BLOCK_ID	Harvest Status	u-9-002	UNIT_NO_1	Dunlevy	Elk	ha
PA13 - TFL48	A42839-002	Planned				yes	3.5
TFL48	T4041	Planned				yes	7.7
TFL48	T4113	Planned	u-9-002	SPC-007			0.1
BCTS-TFL	A58765-007	Planned	u-9-002	SPC-034			11.8
BCTS-TFL	A58765-010	Planned	u-9-002	SPC-034			0.5
TFL48	T5003	Planned	u-9-002	SPC-046			1.4

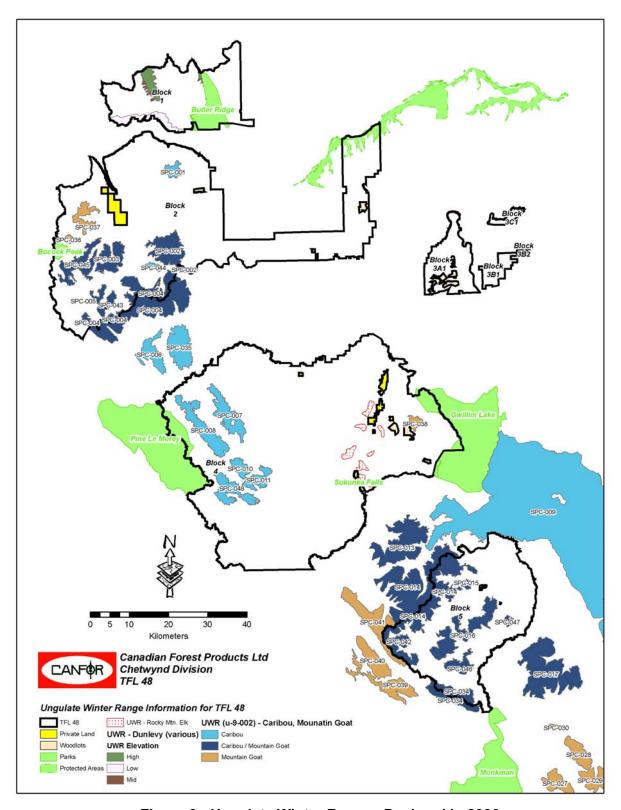


Figure 9: Ungulate Winter Ranges Declared in 2006

REVISIONS:

No revisions are suggested for this indicator or objective.

2.16 FOREST HEALTH

Indicator Statement	Target Statement			
% of significant detected forest health damaging events which have treatment plans prepared	100% of significant detected forest health damaging events will have treatment plans prepared within 1 year of initial detection			
SFM Objective:				
We will sustain a natural range of variability in ecosystem function, composition and structure, which allows ecosystems to recover from disturbances and stress.				

STATUS AND COMMENTS:

In 2007 there was one significant forest health damaging event occurring on TFL and that is the ongoing Mountain Pine Beetle (MPB) infestation. The level of incidence of the MPB exploded to over an estimated 5 million m³ of attack in 2006.

Overview flights occurred in September 2007 over just Blocks 1 and 3 of TFL48. Following the overview flight a forest health team consisting of the Peace Forest District and forest licensee staff prioritized and created a treatment strategy for all of the mountain pine beetle infestations within the TFL based on budget and beetle biology. Due to budgets and the high level of MPB attack within TFL48 there were no viable treatments conducted with the exception of salvage logging.

The estimated incidence of pest damaging agents is similar to those reported in SFMP 4 with the exception of Mountain Pine Beetle where incidence has risen. Based upon the aerial surveys completed in Blocks 1 and 3 it is estimated that the MPB incidence rate of 1.62% of the pine was attacked. This rate was then applied to the remaining volumes of pine in Blocks 2, 4 and 5 to estimate the total amount of attack in the TFL in 2007.

Table 13: Estimated MPB Incidence Changes

MPB Estimated Incidence	Low	Mid	High
SFMP4 Estimated Incidence	99.5%	0.5%	0%
2006 Estimated Incidence	40%	25%	35%

Table 14: Summary of Forest Health Issues 2000-2007

Factor	2007 Volume (m³)	2007 Area (ha)	2000-2007 Volume (m ³)	2000-2007 Area (ha)	Comments
Blow Down	0	0	10,665	38.8	Derived area from volume /275.
Mountain Pine Beetle	414,000	1,500	5,681,550	20,660	Derived volume based on .35 m³ per tree. Derived area from volume /275.
Spruce Bark Beetle	0	0	1,800	6.5	Derived area from volume /275.
Fire	2,565	31.1	3,125	96.6	No salvage operations initiated. Volume estimated at 30% mortality and 275m3/ha
Balsam Bark Beetle	0	0	0	0	Very light incidence in mountain areas.
Spruce Budworm	0	0	0	0	Possible incidence in 2000 – may have been misclassified.
Forest Tent Caterpillar	0	0	0	0	Scattered levels in 2000.
Environmental	0	0	0	0	Incidental and scattered snow damage – not quantifiable.
Total	418,572	3,538.1	5,697,133	20,794.9	

REVISIONS:

No revisions are suggested for this indicator or objective.

2.17 PROPORTION OF COMPLETED FOREST HEALTH ACTION PLANS

Indicator Statement	Target Statement					
Proportion of required actions completed as per forest health treatment plans	100% of required actions will be completed as per forest health treatment plans					
SFM Objective:						
We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbances and stress.						

STATUS AND COMMENTS:

There were two forest health treatment plan created in 2007 and they were completed as required.

These plans were dealing with the fire in the spring at Little Johnson Creek. An assessment was conducted and it was determined that no salvage activities would be undertaken of this fire as it was determined that only about 30% of the trees within the area were killed.

The second plan was centered on MPB salvage. There was no funding available for any treatments on the TFL beyond salvage harvesting. This harvest plan was based upon the direction form the Deputy Chief Forester to target 70% of the harvest to pine stands. The Deputy Chief Foresters determination was effective May 25, 2007. Deliveries from TFL 48 since June 2007 to the end of December 2007 resulted in 71% pine being delivered.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.18 REGENERATION DECLARATION

Indicator Statement	Target Statement					
Area weighted average time delay from harvesting starting and initial restocking of harvest area by DFA	Average delay will be no more than 2 years					
SFM Objectives:						
We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbances and stress						

STATUS AND COMMENTS:

At the end of 2007 the average age of NSR on TFL 48 was 1.49 years for all areas where harvesting started prior to January 1, 2008.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.19 FREE GROWING STANDS

Indicator Statement	Target Statement						
Proportion of area harvested that has free growing stands re-established	100% of the area harvested will meet the free growing requirements identified in the silviculture prescriptions/site plans						
SFM Objectives:							
We will sustain a natural range of variability in ecosystem function, composition and structure which allows ecosystems to recover from disturbances and stress							

STATUS AND COMMENTS:

All areas harvested have met free growing requirements as identified in the silviculture prescriptions/site plans. No areas are past the free growing timelines. See Figure 10 for status of areas harvested on TFL where there is a free growing requirement.

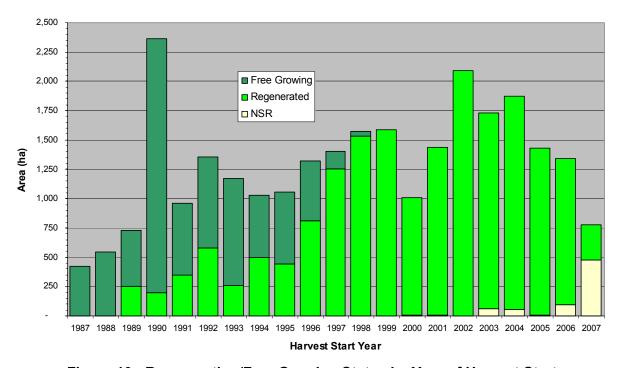


Figure 10: Regeneration/Free Growing Status by Year of Harvest Start

REVISIONS:

No revisions are suggested for this indicator or objective.

2.20 PERMANENT ACCESS CORRIDORS

Indicator Statement	Target Statement						
Percent of area of the DFA occupied by permanent access corridors associated with forest management activities	We will limit impacts on the land base due to the presence of permanent access corridors to less than 2.4% of the gross land base of the DFA						
SFM Objective:							
We will sustain the natural range of ecosystem productivity to support naturally occurring species.							
We will protect soil resources to sustain productive forests.							
We will sustain forests within the DFA.							

STATUS AND COMMENTS:

The following table reports the status as of SFMP 4. The next reporting of this indicator will be in done in conjunction with SFMP 5 in 2010.

Table 15: Permanent Access Corridors in TFL 48 (Existing)

Road Type (RoW width in metres)	Total Area (ha)	% of Gross TFL Area (653,576 ha)
Undistinguished Road type but delineated in VRI	4,709	0.72%
1 - ML (25m)	96	0.01%
2 - ML Sec (20m)	329	0.05%
3 - Operational (15m)	760	0.12%
4 - Block Perm (8m)	1,676	0.26%
Gravel Sec (30m)	52	0.01%
Grand Total	7,623	1.17%

Source VRI 2004

REVISIONS:

No revisions are suggested for this indicator or objective.

2.21 SITE INDEX

Indicator Statement	Target Statement					
Area weighted average Site Index by ecological site series by leading species	The area weighted average Site Index by leading species by site series at free growing will not be less than the SIBEC predicted site index					
SFM Objective:						
We will sustain the natural range of ecosystem productivity to support naturally occurring species.						
We will protect soil resources to sustain productive forests.						

STATUS AND COMMENTS:

The following Table 16 shows the current status for stands declared free growing on TFL 48 and site productivity assessed using the growth intercept methodology. The area declared free growing is 8,920 ha that have had surveys completed which have collected growth intercept data during free growing surveys.

The ESSFmv205 Lodgepole Pine unit is currently below the predicted site index but within the 10% allowable variance. The SBSwk201Lodgepole Pine unit is currently below the predicted site index by slightly more than the 10% variance. Overall the SBS however is within the variance. This unit will continue to be monitored to determine if a trend exists.

Table 16: Site Index by Leading Species for Free Growing Stands

		Species Specie									
		Subalpine			W	White Spruce			Lodgepole Pine		
				Predicted			Predicted			Predicted	
BEC	Site Series	ha	SI	SI	ha	SI	SI	ha	SI	SI	
BWBSmw1	01	-	-	N/A	657.0	25.5	17.7	323.4	19.5	18.0	
	02 03	-	-	N/A	103.1 264.6	20.1 22.2	9.0	16.2 104.3	20.7	12.0	
	03	-	-	N/A N/A	264.6 55.7	22.2	17.0 12.0	32.0	20.1 17.7	18.0 15.0	
	05	_	_	N/A	60.3	26.6	18.0	5.0	19.8	18.0	
	06	_	_	N/A	24.9	20.6	18.1	-	-	18.0	
	07	-	_	N/A	-	-	18.0	0.1	22.2	18.0	
BWBSmw1											
Total		-	-	N/A	1,165.7	24.1	16.5	481.1	19.5	17.6	
BWBSwk1	01	-	-	N/A	124.8	21.3	12.0	378.5	17.4	15.0	
	02	-	-	N/A	10.0	16.4	9.0	21.2	20.0	12.0	
	03	-	-	N/A	17.7	23.4	9.0	31.6	17.0	12.0	
	04 05	-	-	N/A N/A	3.6 0.1	21.7 21.5	12.0 15.0	0.3 0.5	15.9 16.6	15.0 15.0	
	06	_	-	N/A N/A	-	-	15.0	-	-	15.0	
BWBSwk1 Total	00	-	-	N/A	156.2	21.3	11.5	432.1	17.5	14.6	
BWBSwk2	01	-		N/A	76.8	18.9	12.0	4.3	19.0	15.0	
BVVBOWKZ	02	_	_	N/A	1.9	18.0	9.0	-	-	12.0	
	03	_	_	N/A	1.3	17.9	12.0	_	_	15.0	
	04	_	_	N/A	2.5	18.1	9.0	_	_	12.0	
	05	-	-	N/A	2.6	18.0	15.0	-	-	15.0	
BWBSwk2 Total		-	-	N/A	85.1	18.8	11.9	4.3	19.0	15.0	
ESSFmv2	01	189.0	19.6	12.0	774.2	20.3	15.0	557.2	18.0	15.0	
	02	-	-	9.0	44.4	21.2	9.0	37.8	19.9	12.0	
	03	15.3	16.3	6.0	17.8	22.6	6.0	20.9	20.5	9.0	
	04	114.1	23.8	15.0	121.0	22.8	15.0	99.0	17.1	18.0	
	05	0.3	25.3	15.0	0.9	20.2	15.0	0.5	21.4	15.0	
	06	-	-	15.0	0.9	20.4	15.0	-	-	15.0	
ESSFmv2 Total		318.6	21.0	12.8	959.2	20.7	14.6	715.4	18.1	15.1	
ESSFmv4	01	-	-	12.0	45.8	18.0	15.0	-	-	15.0	
	02	-	-	9.0	0.2	18.0	9.0	-	-	12.0	
	03 04	-	-	6.0 15.0	0.0 0.5	19.2 18.0	6.0 15.0	-	-	9.0 18.0	
ESSFmv4 Total	04	-	-	10.5	46.5	18.0	15.0	-		-	
ESSFwc3	01	0.5	23.8	15.0	-	-	15.0			-	
LOGI WCO	02	-	25.0	9.0	_	_	9.0	-	-	_	
	03	1.6	24.8	15.0	-	_	15.0	_	_	_	
ESSFwc3 Total		2.1	24.6	15.0	-	-	13.0	-	-	-	
ESSFwk2	01	159.5	22.3	15.0	119.7	21.5	15.0	84.3	18.7	N/A	
	02	309.4	19.6	9.0	2.6	21.1	9.0	38.1	18.0	N/A	
	03	75.9	24.1	12.0	70.9	21.7	12.0	46.5	18.7	15.0	
	04	141.2	24.4	15.0	37.8	20.2	15.0	32.5	17.7	N/A	
	05	75.3	24.8	15.0	40.6	28.8	15.0	1.9	19.8	N/A	
	06	2.4	25.1	12.0	0.3	23.8	12.0	0.9	17.9	N/A	
ESSFwk2 Total	0.1	763.6	22.0	12.3	271.9	22.4	14.2	204.1	18.4	15.0	
SBSwk2	01	62.8	20.2	15.0	902.6	23.1	21.8	789.7	18.8	21.0	
	02	16.0	21.6	12.0	55.0	21.7	15.0	17.6	21.0	15.0	
	03 04	11.4	20.0	12.0	208.2	23.0 21.7	18.0 15.0	303.3	20.9	18.0	
	04	2.4 23.8	20.4 23.4	N/A 18.0	277.4 287.5	21.7 21.8	15.0 21.0	105.5 151.7	18.6 19.7	18.0 21.0	
	06	1.5	23.4 24.6	18.0	49.7	24.0	24.0	7.4	17.5	21.0	
	07	0.8	25.1	N/A	26.2	22.1	N/A	14.3	18.4	N/A	
SBSwk2 Total	, , , , , , , , , , , , , , , , , , ,	118.7	21.1	14.5	1,806.5	22.6	19.7	1,389.3	19.3	19.8	
Grand Total		1,203.0	21.7	12.6	4,491.1	22.4	17.0	3,226.3	18.8	17.4	
				-	· · · · · · · · · · · · · · · · · · ·		-				

REVISIONS:

No revisions are suggested for this indicator or objective.

2.22 AAC

Indicator Statement	Target Statement					
Allowable Annual Cut	We will ensure that the Allowable Annual Cut will not adversely impact Long Term Harvest Level					
SFM Objective:						
We will sustain the natural range of ecosystem productivity to support naturally occurring species.						
We will balance annual growth rate and harvest rate.						

STATUS AND COMMENTS:

The latest TSR Analysis Report was completed and submitted in August 2006, and the AAC Rationale was effective May 25th, 2007. See Table 17 for a history of the AAC's for TFL 48. The Deputy Chief Forester chose to increase the AAC slightly beyond what Canfor had requested to enable additional Mountain Pine Beetle salvage. This level still does not jeopardize the Long Term Harvest Level.

Table 17: Annual Allowable Cut and Long-Term Harvest Level

	MP 1	MP 2	SFMP 3	SFMP 4
Partition	AAC	AAC	AAC	AAC
Coniferous	410,000	460,000	525,000	800,000
Deciduous	0	54,000	55,000	100,000
Total	410,000	514,000	580,000	900,000

REVISIONS:

No revisions are suggested for this indicator or objective.

2.23 SOIL DEGRADATION

Indicator Statement	Target Statement				
Soil degradation	We will not exceed site degradation guidelines as defined in site plans				
SFM Objective: We will protect soil resources to sustain productive forests.					

STATUS AND COMMENTS:

All blocks with harvest completed in 2007 (n=32) have been within the site degradation guidelines defined in site plans.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.24 SOIL DISTURBANCE SURVEYS

Indicator Statement	Target Statement					
Soil disturbance surveys	We will not exceed soil disturbance limits within cutblocks as defined in site plans					
SFM Objective: We will protect soil resources to sustain productive forests.						

STATUS AND COMMENTS:

All blocks with harvest completed in 2007 (n=32) have been within the soil disturbance guidelines defined in site plans.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.25 USE OF ENVIRONMENTALLY FRIENDLY LUBRICANTS

Indicator Statement	Target Statement					
Use of environmentally friendly lubricants	We will research and identify environmentally friendly lubricants bi-annually					
SFM Objective: We will protect soil resources to sustain productive forests.						

STATUS AND COMMENTS:

Synthetic and vegetable-based hydraulic fluids are available, however they are currently regarded as inferior to hydrocarbon based fluids on the basis of cost and performance. Therefore no operational use of these lubricants has occurred.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.26 SPILLS ENTERING WATERBODIES

Indicator Statement	Target Statement					
Number of reportable spills or misapplications entering water bodies	Zero reportable spills or misapplications entering water bodies					
SFM Objective: Maintenance of water quality						

STATUS AND COMMENTS:

On June 25, 2007, during the herbicide efficacy flight to evaluate the 2006 spray program, a deviation from the plan was noted in block 619-006. This block was treated on August 18, 2006. It appeared that the Pesticide Free Zone (PFZ) on an S6 stream was infringed upon, and the S6 stream was crossed. An investigation into the occurrence revealed that the PFZ was treated, the S6 stream was crossed, and the bag lines marking the treatment boundary were not followed. The contractors on site speculate that the stream was probably dry, as were other S6's in the block, and they may have changed the plan on the fly to reflect this. The contractor has no specific documentation on whether or not the stream was dry at the time of application. If the stream was dry, this is in accordance with the Pesticide Management Plan (PMP) and is not non-compliance. If the stream was flowing, it is non-compliance to our Forestry Management System.

The stream was monitored through out the summer of 2007 to see if it was flowing at the same time of year as the treatment was in 2006 and it was found to have water in it in 2007. 2007 was a wetter year than 2006, however Canfor has no information to determine if the stream was dry during application and as a result this potential misapplication was reported to the Ministry of Environment. No additional actions have been requested from MoE.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.27 STREAM CROSSING QUALITY INDEX

Indicator Statement	Target Statement						
Maximum Stream Crossing Quality Index (SCQI) by watershed	The maximum SCQI score is 0.40 by watershed						
SFM Objective: We will maintain water quality and quantity.							

STATUS AND COMMENTS:

In the 2007 field season 55 crossings were surveyed in the Lower Murray River watershed, and 154 additional crossings in the Upper Murray River watershed for a total of 209 crossings. Sampling of these watersheds is complete and based on the SCQI cumulative effects hazard rating there is a low potential that surface erosion originating from stream crossings will lead to cumulative watershed effects.

The cumulative results to date are summarized by watershed in Table 18. All watersheds are below the maximum target level.

Table 18: SCQI and Water Quality Concerns for Watersheds within TFL 48
- Sampling Completed 2001 to 2007

		Erosion Indices			Water Quality Concern Ratings				
Watershed Name	n	Stream Crossing Density Index	Sum of Stream Crossing Quality Scores	Stream Crossing Quality Index	Stream Width Class ¹	None ² % (#streams/ #streams sampled)	Low ³ % (#streams/ #streams sampled)	Medium ⁴ % (#streams/ #streams sampled)	High ⁵ % (#streams/ #streams sampled)
					1	0.0	0.0	0.0	0.0
					2	33.3	66.7	0.0	0.0
Gaylard	47	0.30	14.9	0.10	3	40.0	20.0	26.7	13.3
					4	46.7	13.3	26.7	13.3
					5	36.4	18.2	9.0	36.4
			1	0.0	0.0	0.0	0.0		
Lower					2	33.3	33.3	33.3	0.0
Lower Peace	61	0.44	18.7	0.14	3	12.5	75.0	12.5	0.0
1 cace	reace			4	31.3	50.0	0.0	18.7	
			5	23.5	41.2	11.8	23.5		
					1	60.0	40.0	0.0	0.0
					2	0.0	0.0	66.7	33.3
Gething	70	0.38	28.3	0.15	3	36.4	27.2	36.4	0.0
					4	24.0	40.0	4.0	32.0
					5	19.2	23.1	19.2	38.5
					1	0.0	0.0	0.0	0.0
					2	25.0	75.0	0.0	0.0
Wolverine	51	0.28	3 16.2	0.09	3	60.0	0.0	0.0	40.0
					4	46.7	33.3	13.3	6.7
					5	18.5	44.5	33.3	3.7

Watershed Name Parison Crossing Oberation Crossing Obers Crossing Obera Crossin			Erosion Indices				Water	Quality Conce	rn Ratings	
Middle Wolverine 22		n	Crossing Density	Stream Crossing Quality	Crossing Quality	Width	(#streams/ #streams	(#streams/ #streams	(#streams/ #streams	(#streams/ #streams
Middler 22 0.13 3.96 0.02 3 72.7 9.1 0.0 18.2 Hasier 119 0.63 71.23 0.37 2 0 66.7 33.3 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Molverine 22 0.13 3.96 0.02 3 72.7 9.1 0.00 18.2	Middle									
Hasler 119 0.63 71.23 0.37		22	0.13	3.96	0.02					
Hasler 119 0.63 71.23 0.37										
Hasler 119 0.63 71.23 0.37 2 0.37 3 5.9 17.7 29.4 47.1 21.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Hasler										
Brazion 105 0.32 34.48 0.11 1	Hasler	119	0.63	71 23	0.37					
Brazion 105	1146161	1.0	0.00	7 1.20	0.07					
Brazion 105 0.32 34.48 0.11 1 0 0 0 0 0 0 0 0										
Brazion 105 0.32 34.48 0.11 3 5.6 44.4 22.2 27.8 44 27.2 47.3 16.4 9.1 16.4 9.1 17.4 16.7 28.5 22.2 55.6 14.8 7.4 16.7 28.6 16.5 22.2 55.6 14.8 7.4 16.7 28.6 16.5 22.2 55.6 14.8 7.4 16.7 28.6 20.0 0.0 100.0 0.0 0.0 20.							0			
Highhat Highhat 108 0.68 30.27 0.19 3 20.0 50.0 100.0 0 0 0 0 0 0 0 0 0						2	20.0	40.0	0	40.0
Highhat 108 0.68 30.27 0.19 2 0 0 0 0 0 0 0 0 0	Brazion	105	0.32	34.48	0.11	3	5.6	44.4	22.2	27.8
Highhat 108 0.68 30.27 0.19						4	27.2	47.3		9.1
Highhat 108 0.68 30.27										
Highhat 108 0.68 30.27 0.19 3 20.0 50.0 10.0 20.0 13.1 4 21.3 42.6 23.0 13.1 5 5 6.1 44.4 16.7 2.8 1 1 0 0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0								_	-	
Lower Carbon 61								_		
Lower Carbon 61	Highhat	108	0.68	30.27	0.19					
Lower Carbon 61										
Lower Carbon 61										
Carbon C										
Seven Mile 28	Lower	61	0.46	23 32	0.17				_	
Seven Mile 28 0.36 15.1 0.19 1 0 0 0 0 0 0 0 0 0	Carbon	01	0.40	25.52	25.52 0.17					
Seven Mile 28 0.36 15.1 0.19 15.1 0.19 2 100.0 0 0 0 0 0 0 0 0 0										
Seven Mile 28 0.36 15.1 0.19 3										
Seven Mile 28										
Eleven Mile 37 0.17 5.31 0.02	Seven Mile	28	0.36	15.1	0.19	3	0	100.0	0	0
Eleven Mile 37 0.17 5.31 0.02 1 0.02 3 3.3 66.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						4	0	27.8	38.9	33.3
Eleven Mile 37 0.17 5.31 0.02 2 33.3 66.7 0 0 0 8						5	0	80.0	20.0	0
Eleven Mile 37								0	-	
East and West Carbon Sukunka S		_							_	
East and West Carbon 39 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6	Eleven Mile	37	0.17	5.31	0.02					
East and West Carbon 89 N/A6 N/A6 N/A6 80 N/A6 N/A6 N/A6 80 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6 N/A6										
East and West Carbon 39 N/A ⁶ <										
West Carbon 39 N/A ⁶ N/A ⁶ N/A ⁶ N/A ⁶ 3 0 50.0 37.5 12.5 Lower Sukunka 191 0.36 70.63 0.13 1 0.0 0.0 0.0 0.0 0.0 Lower Sukunka 90 N/A ⁶ N/	5 41									
Carbon 4 0 32.0 48.0 20.0 5 0 66.7 33.3 0 Lower Sukunka 191 0.36 70.63 0.13 1 0.0 0.0 0.0 0.0 2 0.0 66.7 0.0 33.3 3 10.0 30.0 15.0 45.0 4 20.2 41.5 10.6 27.7 5 28.8 37.0 23.3 10.9 1 100 0.0 0.0 0.0 2 0.0 100.0 0.0 0.0 2 0.0 100.0 0.0 0.0 2 0.0 100.0 0.0 0.0 3 30.0 20.0 20.0 30.0 4 18.8 43.7 18.8 18.7 5 31.0 34.5 31.0 3.4 5 31.0 34.5 31.0 3.4 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3		30	Ν/Δ ⁶	Ν/Δ ⁶	N/Δ ⁶					
Lower Sukunka 191 0.36 70.63 0.13 1 0.0			14//	14//	14//					
Lower Sukunka 191 0.36 70.63 70.63 0.13 10.00 0										
Lower Sukunka 191 0.36 70.63 0.13 2 0.0 66.7 0.0 33.3 3.3										
Sukunka 191 0.36 70.63 0.13 3 10.0 30.0 15.0 45.0 Upper Sukunka 90 N/A6 N/A6 N/A6 N/A6 N/A6 1 100 0.0 0.0 0.0 Sukunka 90 N/A6 N/A6 N/A6 N/A6 N/A6 1 100 0.0 0.0 0.0 4 18.8 43.7 18.8 18.7 18.8 18.7 18.8 18.7 5 31.0 34.5 31.0 3.4 0.0 0.0 0.0 0.0 Lower Pine 44 0.27 17.44 0.11 3 0.0 50.0 50.0 50.0 0.0 4 16.7 46.7 13.3 23.4	Laws									
Upper Sukunka 90		191	0.36	70.63	0.13	3	10.0	30.0	15.0	45.0
Upper Sukunka 90 N/A6	Jukulka									
Upper Sukunka 90 N/A ⁶ N/A ⁶ N/A ⁶ 2 0.0 100.0 0.0 0.0 4 18.8 43.7 18.8 18.7 5 31.0 34.5 31.0 3.4 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 4 16.7 46.7 13.3 23.4										
Upper Sukunka 90 N/A ⁶ N/A ⁶ N/A ⁶ 3 30.0 20.0 20.0 30.0 4 18.8 43.7 18.8 18.7 5 31.0 34.5 31.0 3.4 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 4 16.7 46.7 13.3 23.4										
Sukunka 90 N/A N/A N/A Sukunka 3 30.0 20.0 20.0 30.0 4 18.8 43.7 18.8 18.7 5 31.0 34.5 31.0 3.4 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 4 16.7 46.7 13.3 23.4	Upper		N1/26							
Lower Pine 44 0.27 17.44 0.11 5 31.0 34.5 31.0 3.4 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			N/A°							
Lower Pine 44 0.27 17.44 0.11 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
Lower Pine 44 0.27 17.44 0.11 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0										
Lower Pine 44 0.27 17.44 0.11 3 0.0 50.0 50.0 50.0 0.0 4 16.7 46.7 13.3 23.4										
4 16.7 46.7 13.3 23.4	Lower Pine	44	0.27	17 44	N 11					
	LOWGITING		0.21	17.77	J. 11					
						5	41.7	25.0	25.0	8.3

		Erosion Indices			Water Quality Concern Ratings				
Watershed Name	n	Stream Crossing Density Index	Sum of Stream Crossing Quality Scores	Stream Crossing Quality Index	Stream Width Class ¹	None ² % (#streams/ #streams sampled)	Low ³ % (#streams/ #streams sampled)	Medium ⁴ % (#streams/ #streams sampled)	High ⁵ % (#streams/ #streams sampled)
					1	100	0.0	0.0	0.0
					2	25	37.5	25	12.5
Burnt River	205	0.33	72.66	0.12	3	37.9	27.6	20.7	13.8
					4	37.3	22.9	19.3	20.4
					5	29.3	26.8	20.7	33.2
					1	100.0	0.0	0.0	0.0
Lauran					2	50.0	50.0	0.0	0.0
Lower Murray	55	0.32	17.79	0.10	3	31.3	37.5	25.0	6.3
ividitay					4	10.7	71.4	3.6	14.3
				5	16.7	66.7	16.7	0.0	
				1	100.0	0.0	0.0	0.0	
I I a a a a					2	100.0	0.0	0.0	0.0
Upper Murray	154	0.86	32.18	0.18	3	54.5	27.3	13.6	4.5
ividitay					4	16.9	61.0	5.1	16.9
					5	52.4	11.1	25.4	11.1

^{1. 1 =} greater than 20m, 2 = 5 to 20m, 3 = 1.5 to 5m, 4 = 0.5 to 1.5m, 5 = less than 0.5m

No revisions are suggested for this indicator or objective.

2.28 ACTION PLANS FOR HIGH WATER QUALITY CONCERN RATING (WQCR)

Indicator Statement	Target Statement				
Number of crossings with a High Water Quality Concern (WQCR) with actions plans prepared within one year of discovery	100% of High WQCR crossings will have action plans prepared within one year of discovery				
SFM Objective: We will maintain water quality and quantity.					

STATUS AND COMMENTS:

All action plans for surveys completed in 2005 and 2006 have been completed. This season action plans for areas surveyed in 2007 will be completed.

REVISIONS:

No revisions are suggested for this indicator or objective

^{2.} SCQI scores of 0.00

^{3.} SCQI scores between 0.01 and 0.39 $\,$

^{4.} SCQI scores between 0.40 and 0.79

^{5.} SCQI scores greater than 0.80

^{6.} Erosion indices cannot be calculated because these areas are not true watersheds.

2.29 PEAK FLOW INDEX

Indicator Statement	Target Statement						
The percentage of watersheds within TFL 48 achieving baseline thresholds for Peak Flow Index	A minimum of 95% of the watersheds within TFL 48 will be below the baseline threshold						
SFM Objective: We will maintain water quality and quantity.							

STATUS AND COMMENTS:

A new projection of Peak Flow Index (PFI) has been completed for 2007. Currently 34 of 34 watersheds (100%) are meeting the PFI target. The Johnson watershed was previously not meeting the PFI target. This is due to the RAN fire (1985), which covered a large portion of the watershed. However the projected information presented here includes an update to the projected heights for all stands in the forest inventory. The Johnson watershed is now below the maximum PFI.

The projections completed in 2007 do not forecast as much harvesting as previous projections due to the change in how Forest Stewardship Plan (FSP) proposed harvest area blocks are displayed. These areas are generally significantly larger to facilitate consultation over a broader area and as such would over represent the actual disturbance. Forecasting is now done for all areas which have been harvested or those areas which have had the actual fieldwork layout completed.

The information presented in this annual report forecasts disturbances and growth to 2010.

Table 19: Peak Flow Index Post Development Status

	1100	Watershed	Belov	v H60	Abov	e H60	H60	Post	Max
Watershed	H60 ELEV	ha	ha	ECA	ha	ECA	Weighted ECA (ha)	Development PFI (%)	PFI
Adams Creek	1,107	5,458	2,102	11.5	3,355	31.1	58.1	1.1	43
Aylard Creek	1,036	5,456	2,100	53.4	3,356	259.5	442.7	8.1	37
Basin "862"	853	4,884	1,725	57.5	3,159	226.1	396.7	8.1	43
Beany Creek	958	3,899	1,537	43.9	2,362	40.7	105.1	2.7	37
Brazion Creek	1,220	32,375	11,850	1,790.3	20,526	2,248.6	5,163.2	15.9	37
Burnt Creek	1,185	62,161	23,413	3,544.3	38,748	4,272.8	9,953.5	16.0	37
Cameron Creek	783	3,613	1,273	11.0	2,340	38.1	68.2	1.9	50
Dunlevy Creek	1,047	17,007	6,549	265.2	10,459	532.9	1,064.5	6.3	31
Eleven Mile	1,326	21,603	8,318	616.3	13,285	1,393.0	2,705.8	12.5	43
Gaylard	1,029	15,638	5,780	861.1	9,858	1,166.2	2,610.4	16.7	31
Gething	996	18,505	6,550	901.7	11,956	1,442.1	3,064.8	16.6	31
Gwillim	1,066	4,488	1,586	63.6	2,902	206.5	373.3	8.3	43
Hasler Creek	1,077	19,010	6,858	690.5	12,152	1,508.1	2,952.7	15.5	37
Highat Creek	1,037	15,647	5,382	732.3	10,265	1,204.9	2,539.6	16.2	43
Johnson	891	21,153	7,965	624.9	13,188	2,650.4	4,600.6	21.7	37
Lebleu Creek	874	1,999	719	13.7	1,280	36.5	68.4	3.4	50
LeMoray Creek	1,291	11,190	4,013	664.7	7,177	1,302.4	2,618.2	23.4	37
Lower Carbon	1,057	13,167	4,992	711.3	8,176	554.7	1,543.3	11.7	50
Lower Murray	1,066	17,398	6,308	445.0	11,091	472.7	1,154.1	6.6	37
Lower Peace Reach	955	14,347	5,579	925.8	8,768	1,247.1	2,796.4	19.5	50
Lower Pine Residual	923	16,228	5,713	487.4	10,515	1,412.5	2,606.1	16.1	43
Lower Sukunka	904	54,089	18,791	1,305.0	35,298	2,466.8	5,005.2	9.3	43
Lower Wolverine	1,161	23,241	8,678	947.5	14,563	1,669.0	3,451.1	14.8	37

	1100	Watershed	Belov	v H60	Abov	e H60	H60	Post	Max
Watershed	H60 ELEV	ha	ha	ECA	ha	ECA	Weighted ECA (ha)	Development PFI (%)	PFI
Medicine Woman Creek	975	1,876	718	0.0	1,158	0.0	-	-	35
Middle Wolverine	1,205	17,585	6,549	620.6	11,036	2,397.0	4,216.1	24.0	43
North Peace Residual	929	9,462	3,813	241.8	5,649	101.0	393.3	4.2	50
Ruddy Creek	922	6,445	2,495	71.4	3,949	120.4	252.1	3.9	31
Seven Mile	1,257	7,878	2,990	275.4	4,889	448.2	947.7	12.0	43
Trapper Creek	1,179	7,571	2,616	3.8	4,955	155.0	236.4	3.1	37
Upper Carbon	1,291	46,258	17,582	2,346.7	28,676	2,203.7	5,652.2	12.2	37
Upper Murray	1,294	17,858	6,474	1,686.7	11,384	1,361.2	3,728.4	20.9	37
Upper Pine Residual	1,082	40,084	14,265	1,018.2	25,819	4,633.9	7,969.1	19.9	37
Upper Sukunka	1,075	23,444	8,602	759.1	14,842	1,970.8	3,715.3	15.8	43
Upper Wolverine	1,378	18,032	6,325	930.4	11,707	1,370.2	2,985.7	16.6	37

No revisions are suggested for this indicator or objective.

2.30 WATERSHED REVIEWS

Indicator Statement	Target Statement		
The percentage of watersheds reviews completed where the baseline threshold is exceeded	100% of watersheds that exceed the baseline threshold will have a watershed review completed when new harvesting is planned		
SFM Objective: We will maintain water quality and quantity.			

STATUS AND COMMENTS:

Currently there are no watershed reviews required.

There are no watersheds where the PFI is currently exceeded or proposed to be exceeded, (see Table 19). Each year this will be reassessed based upon growth and new areas proposed to be harvested. If it is forecasted that the PFI may be exceeded then a watershed review will be conducted.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.31 CARBON SEQUESTRATION

Indicator Statement	Target Statement	
DFA Average Carbon (C) sequestration rate (Mg C/year)	Maintain DFA average carbon sequestration rates that are no more than 15% less than those achieved using the minimum natural range of variation	
SFM Objective: We will maintain the processes for carbon uptake and storage within the natural range of variation.		

STATUS AND COMMENTS:

There has been no change in the status of this indicator since reported in SFMP 4. The next reporting of this indicator will be in 2010 or in conjunction with a change in the proposed harvest levels.

Following are two graphs, which provides an example of the average C sequestration rate for both an individual stand (Forecast AU 3 – Natural and Forecast AU 34 – Managed) and shows the average C sequestration rate over the whole DFA over time.

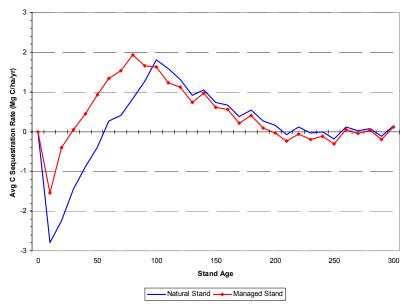


Figure 11: An Example of Average C Sequestration Rates for a Natural Spruce Leading BWBS Mesic Site Stand (Forecast AU 5) and an Associated Managed Stand (Forecast AU m³)

At the stand level there is a greater release of C to the atmosphere following the decomposition of the larger pool of dead organic matter (snags and CWD) in the natural stand which results in a lower sequestration rate during the first several decades of stand development (Figure 11). In the example provided, the average sequestration rate takes longer to return to positive values in the natural stand versus the managed stand. This is partly related to the fact that the harvested wood removed from the site during harvesting does not contribute to ecosystem C release to the atmosphere. Rather, it is assumed to be stored in wood products.

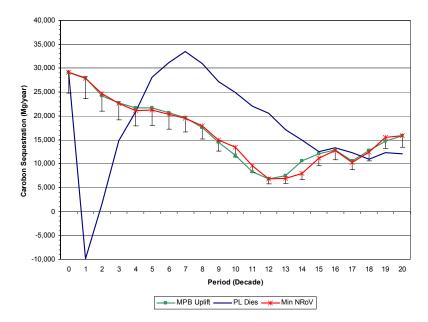


Figure 12: Carbon Sequestration (Mg C/year) within TFL 48 Over Time

At the DFA level the average sequestration rate declines from the present level of about 29,000 Mg C/yr over the next 120 years and stabilizes between 10,000 and 15,000 Mg C/yr in the long term. The decline from the current situation is due to the large amount of area (approximately 62%) that is between 40 and 140 years old and only 29% greater than 140 years old versus in 100 years the projection is that there will be only 31% of the land base between 40 and 140 years old and 58% greater than 140 years old. Over time the age class distribution is more evenly distributed with more area in younger stands and older stands with lower sequestration rates therefore the DFA level sequestration rate declines. For comparison purposes an estimate of the rate of C sequestration is provided for both the proposed AAC the sequestration rates using the minimum natural range of variation and the scenario where all pine is assumed to be killed in a mountain pine beetle outbreak.

There is no significant difference between the proposed harvest level and the minimum natural range of variation except for periods 10 and 11 in the simulation. After this point in time the sequestration rate is above or equivalent for the proposed harvest level.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.32 ECOSYSTEM CARBON STORAGE (MG) IN THE DFA

Indicator Statement	Target Statement		
Ecosystem Carbon (C) Storage (Mg) in the DFA	Minimum of 95% of minimum natural range of variation disturbance levels of Ecosystem Carbon Storage		
SFM Objective: We will maintain the processes for carbon uptake and storage within the natural range of variation.			

STATUS AND COMMENTS:

There has been no change in the status of this indicator since reported in SFMP 4. The next reporting of this indicator will be in 2010 or in conjunction with a change in the proposed harvest levels.

There is an estimated 122 million Mg of C currently stored in the TFL 48 ecosystem declining in the long term to approximately 76 million Mg of C (Figure 14). Both the C storage levels based on the proposed AAC and the minimum and maximum range of variation decline over the next 180 years and then stabilize for the remainder of the simulation. There is no significant difference between the different alternate strategies and the proposed strategy in ecosystem carbon storage over time.

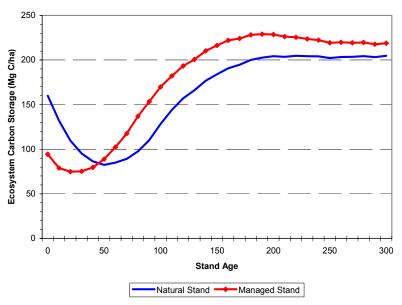


Figure 13: An Example of C Storage for a Natural Spruce Leading BWBS Mesic Site Stand (Forecast AU 5) and an Associated Managed Stand (Forecast AU m³)

For comparison a stand level graph (Figure 13) is provided which demonstrates a natural stand and its associated managed stand C storage levels over time. Note that while the natural stand started with more C remaining on the site after the disturbance the managed stand catches up in about 40 years.

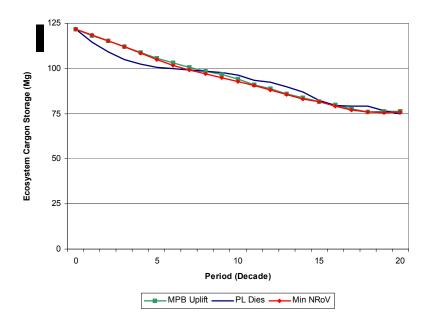


Figure 14: Total Ecosystem Carbon (Mg) Storage in the DFA Over Time

No revisions are suggested for this indicator or objective.

2.33 AREA OF FORESTED LAND

Indicator Statement	Target Statement	
Area of forested land lost due to non-forest industry	We will track and monitor losses to other non- forest industry uses and incorporate these losses into AAC calculation every 5 years	
SFM Objective: We will sustain forests within the DFA.		

STATUS AND COMMENTS:

There has been no change in the status of this indicator since reported in SFMP 4. The next reporting of this indicator will be in 2010 or in conjunction with a change in the proposed harvest levels.

During the term of MP 3 Canfor developed a spatial tracking system to identify what and where non-forest related activities were occurring within TFL 48. All activities proposed within TFL 48 are referred to Canfor and comments are provided which stress the objective of minimizing permanent removal of area from the forested land base. The following table (Table 20) shows reductions to the land base due to other uses.

Table 20: Reductions to Land Base Due to Other Uses (Excluding Roads²)

Feature	Total Area (ha)
Well sites ³	258
Mines 45	1,723
Pipelines	388
Cutlines	1,793
Trails	485
Transmission Lines	201
Grand Total	4,848

No revisions are suggested for this indicator or objective.

2.34 RANGE OPPORTUNITIES

Indicator Statement	Target Statement	
Annual minimum number of Animal Unit Months opportunity	We will maintain an annual minimum of 1,500 Animal Unit Months (excludes brush control by sheep grazing)	
SFM Objective: We will provide opportunities for a feasible mix of timber, recreational activities, visual quality, and non-timber commercial activities.		

STATUS AND COMMENTS:

The following table indicates the amount of grazing AUM's provided on TFL 48 in 2007. Spatial data was obtained from the Land and Resource Data Warehouse AUM's under permit were obtained from the MoFR Peace Forest District staff.

Table 21: AUM's on TFL48 in 2007

Range Tenure	Total AUMs	TFL Proportion	TFL AUM's
RAN073342	401	62.4%	250
RAN073616	275	26.5%	73
RAN073876	1035	35.1%	363
RAN074239	62	100.0%	62
RAN074307	240	40.3%	97
RAN075491	263	11.3%	30
RAN075680	278	88.3%	246
RAN075991	177	100.0%	177
RAN076149	120	2.7%	3
RAN076313	349	0.1%	0
RAN076505	120	9.9%	12
RAN076672	611	62.5%	382
RAN076673	387	60.3%	234
Total			1,929

² Roads are captured in Indicator 2.20 Permanent Access Corridors and are not easily separated as to which are used only by other industries or which are used only by the forest industry.

³ Includes camps, decking areas, borrow pits and sumps

⁴ Includes mines where clearing had started prior to December 2004 (Quintette, Pine Valley Coal and Dillon Mine). Other proposed mines are included as a sensitivity analysis.

⁵ Includes roads within mine-cleared areas.

No revisions are suggested for this indicator or objective.

2.35 MAINTENANCE OF VISUAL LANDSCAPE INVENTORY

Indicator Statement	Target Statement	
Maintenance of Visual Landscape Inventory	We will maintain and update an approved visual landscape inventory	
SFM Objective: We will provide opportunities for a feasible mix of timber, recreational activities, visual quality, and non-timber commercial activities.		

STATUS AND COMMENTS:

Canfor completed an update to the VLI in 1999, and provided recommended Visual Quality Objectives in March 2002. In 2005 the Ministry of Forests and Range subsequently reviewed all VLI's completed in the previous Dawson Creek Forest District and consolidated all information including Canfor's 1999 inventory, into one seamless VLI. During this process it was discovered that there were some errors in Canfor's previous VLI in that it did not contain some known scenic areas. The consolidated VLI polygons were classified into two separate classes, those with existing visual quality objectives (EVQO) and those new polygons (added in the Canfor 1999 VLI) with recommended visual quality classes (RVQC). The EVQO polygons including those previously missing from Canfor's data have been used in the base case timber supply analysis being completed in support of the SFMP 4. The RVQC polygons will be added to the EVQO areas and the impacts modeled in a sensitivity analysis. Pending the sensitivity analysis the MoFR will make a decision on establishing these as VQO's through a Government Actions Regulation Order. The analysis was completed and submitted to the MoFR in the summer of 2006. It is expected that the MoFR will formally establish all areas in the VLI in the near future.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.36 PROPORTION OF HARVESTING CONSISTENT WITH VISUAL QUALITY OBJECTIVE

Indicator Statement	Target Statement	
Proportion of harvesting within known visual areas that are consistent with the Visual Quality Objective (VQO)	100% of harvesting within visual areas will be consistent with the Visual Quality Objective (VQO)	
SFM Objective: We will provide opportunities for a feasible mix of timber, recreational activities, visual quality, and non-timber commercial activities.		

STATUS AND COMMENTS:

The blocks listed in Table 22 and Table 23 had harvesting completed in 2006 and 2007 respectively and were within areas with visual quality objectives. The blocks listed below are all consistent with the indicator and or the acceptable variance.

Table 22: Blocks Harvested in 2006 in Visual Zones

Cut Block ID	Consistent with VQO
MC-3	Yes
MC-5	Yes
T5017	VQO exceeded due to MPB Salvage
T5018	VQO exceeded due to MPB Salvage
T5019	VQO exceeded due to MPB Salvage
T5020	VQO exceeded due to MPB Salvage
T5021	VQO exceeded due to MPB Salvage

Table 23: Blocks Harvested in 2007 in Visual Zones

Cut Block ID	Consistent with VQO
MC-1	Yes
T5015	VQO exceeded due to MPB Salvage
T5016	VQO exceeded due to MPB Salvage
T5022	VQO exceeded due to MPB Salvage
T5023	VQO exceeded due to MPB Salvage
T5024	VQO exceeded due to MPB Salvage
T5025	Yes (Not Visible)
T5027	Yes (Not Visible)
T5032	Yes
T5033	Yes
T5034	Yes

No revisions are suggested for this indicator or objective.

2.37 BACK COUNTRY CONDITION

Indicator Statement	Target Statement			
Proportion (%)of back country areas (ha) that are in a semi-primitive recreation opportunity spectrum (ROS) class	We will maintain or increase semi-primitive ROS in Klin se za, Bocock, Butler Ridge, Pine/Lemoray, Peace River/Boudreau and Elephant Ridge/Gwillim Protected Areas and manage Special Management Zones (Klin se za, North Burnt, Dunlevy) as per LRMP (See Table 24 for baseline)			
SFM Objective: We will provide opportunities for a feasible mix of timber, recreational activities, visual quality, and non-timber commercial activities.				

STATUS AND COMMENTS:

There has been no change to the status of this indicator since reported in the SFMP 4 in 2005. In 2007 there was no harvesting or road construction in or adjacent to any of the backcountry areas.

The baseline (2001) and current (2005) recreational opportunity spectrum for the stated Backcountry areas are shown on the following tables (Table 24 and Table 25). Over the term of MP 3 there has been harvesting and road building activity in both the Dunlevy and North Burnt back country areas. Primary road construction, harvesting, silviculture activities and deactivation have been completed. The change in condition has moved approximately 945 ha in the Dunlevy and 1,798 ha in the North Burnt areas from semi-primitive non-motorized to the

semi primitive motorized classification. This change is acceptable within this indicator as the deactivation and removal of bridges in the Dunlevy and North Burnt, and de-construction of the road access to CP 722 in the northern portion of the North Burnt area have maintained motorized access barriers.

Table 24: Baseline Condition – ROS Inventory

ROS Class Baseline Condition -								
Back Country Area	Roaded			Roaded	Semi	Primitive	Semi	Grand
	Rural	Modified	Natural	Total	Motorized	Non Motorized	Primitive Total	Total
Bocock Peak						1,126	1,126	1,126
Butler Ridge			1,133	1,133	1,309	4,151	5,460	6,593
Dunlevy Creek			5,283	5,283	5,001	21,564	26,565	31,848
Elephant Ridge / Gwillim		12		12		2,801	2,801	2,813
North Burnt		53		53	6,076	10,683	16,759	16,813
Peace River / Boudreau	990			990		1,219	1,219	2,209
Pine - Lemoray					882	2,260	3,142	3,142
Klin Se Za			0	0		2,668	2,668	2,669
Klin Se Za Headwaters			7,140	7,140	137	10,581	10,718	17,857
Klin Se Za Mountain			1,711	1,711		4,639	4,639	6,350
Grand Total	990	65	15,266	16,321	13,404	61,694	75,098	91,419

Table 25: Current Condition – ROS Inventory Updated to June 2005

		ROS Class (2005))								
Back Country Area	Roaded			Roaded	Semi	Primitive	Semi	Grand		
	Rural	Modified	Natural	Total	Motorized	Non Motorized	Primitive Total	Total		
Bocock Peak						1,126	1,126	1,126		
Butler Ridge			1,133	1,133	1,309	4,151	5,460	6,593		
Dunlevy Creek			5,283	5,283	5,946	20,619	26,565	31,848		
Elephant Ridge / Gwillim		12		12		2,801	2,801	2,813		
North Burnt		53		53	7,874	8,886	16,759	16,813		
Peace River / Boudreau	990			990		1,219	1,219	2,209		
Pine - Lemoray					882	2,260	3,142	3,142		
Klin Se Za			0	0		2,668	2,668	2,669		
Klin Se Za Headwaters			7,140	7,140	137	10,581	10,718	17,857		
Klin Se Za Mountain			1,711	1,711		4,639	4,639	6,350		
Grand Total	990	65	15,266	16,321	16,147	58,951	75,098	91,419		

REVISIONS:

No revisions are suggested for this indicator or objective.

2.38 RECREATIONAL SITES

Indicator Statement	Target Statement				
Number of recreational trails and campsites maintained by Canfor	Canfor will provide and/or maintain 1 backcountry trail and 3 campsites on TFL 48				
SFM Objective: We will provide opportunities for a feasible mix of timber, recreational activities, visual quality and non-timber commercial values.					

STATUS AND COMMENTS:

Canfor currently maintains the Gething Creek, Carbon Lake and Wright Lake campsites and the 11 Mile Lake Trail. The Gething and Carbon are road access sites. Wright Lake campsite is a remote wilderness site with off highway vehicle or hiking access. The 11 Mile Lake trailhead is road accessible and with a gentle hike you can be in the alpine in just a few hours. All of these recreational values provide a number of outdoor activities (hunting, fishing, hiking and canoeing). All of the above recreational sites can be accessed from the Johnson Creek FSR.

In 2007 BCTS and Canfor conducted maintenance and substantial upgrading works at the Carbon Lake and Gething Creek sites.

REVISIONS:

No revisions are suggested for this indicator or objective

2.39 HARVEST LEVELS/VOLUMES

Indicator Statement	Target Statement			
Harvest levels/volumes	Harvest volumes will not exceed 110% of the 5 year periodic cut control volume for the DFA			
SFM Objective: We will ensure that harvest levels do not adversely impact the long term harvest level.				

STATUS AND COMMENTS:

In 2007 the deputy Chief Forester determined a new AAC for TFL 48. Canfor's allocation in 2007 was 597,669 m³ and BCTS allocation was 56,026 m³. Canfor harvested 81.7% and BCTS 0% of the available allocation in 2007.

Table 26: Actual Recorded and Allowable Annual Cut Summary

	C	anfor Annual (BCTS Summary ²			Deciduous		
Year	Allowable Annual Cut (m³)	Adjustment (m³)	Actual Recorded Cut (m³)	Cut Control (%)	Allowable Annual Cut (m³)	Actual Recorded Cut (m³)	Cut Control (%)	Harvest Summary
1987- 1991 Total	1,742,500.0		1,787,732.0	102.6				
1992- 1996 Total	1,742,500.0	-41,572.0	1,659,920.5	97.6				
1997	401,370.0	16,516.0	343,587.6	82.2				
1998	401,370.0	16,516.0	435,088.2	104.1				
1999	401,370.0	16,516.0	532,574.3	127.4				
2000	401,370.0	16,516.0	302,668.0	72.4				
2001	419,713.0	16,516.0	339,306.1	77.8				
1997-	2,025,193.0	82,580.0	1,953,224.2	92.7				

	C	BCTS Summary ²			Deciduous			
Year	Allowable Annual Cut (m³)	Adjustment (m³)	Actual Recorded Cut (m³)	Cut Control (%)	Allowable Annual Cut (m³)	Actual Recorded Cut (m³)	Cut Control (%)	Harvest Summary
2001 Total								
2002	466,370.0	0.00	499,000.0	107.0	55,350.0	57,400.7	103.7	0
2003	466,370.0	14,393.76	320,971.0 ¹	66.8	55,350.0	93,978.1	169.8	0
2004	466,370.0	14,393.76	546,512.7	113.7	55,350.0	0.0	0.0	0
2005	466,370.0	14,393.76	525,673.5	109.3	55,350.0	6,104.3 ³	11.0	0
2006	466,370.0	14,393.76	452,352.7	94.1	55,350.0	40,514.12 ⁴	73.2	66,084.52 ⁵
2002- 1996 Total	2,331,850.0	57,575.04	2,344,509.91	98.1	276,750.0	197,997.25	71.5	66,084.52
2007	597,669	0	488,418	81.7	56,026	0	0	60,931.40
Running Total	597,669	0	488,418	81.7	56,026	0	0	60,931.4

Source: MoF Annual Cut Control Letters (1987-2006)

- Note that this value represents the Ministries official billed volume. However based on Canfor's records the volume delivered to Canfor's scale was 431,324 m³ or 89.7% of the AAC. The difference is due to some problems with the Ministry's billing of stumpage at the end of the cut control annual period. The MoF reported this volume in 2004.
- 2 BCTS volumes were reported using the MoFR Harvest Billing System reports.
- 3 This value represents the volume delivered from A77788 in 2005 as reported in the MoFR Harvest Billing System (HBS).
- 4 This value represents the volume delivered from A77788 in 2006 as reported in the MoFR Harvest Billing System (HBS).
- 5 This value represents the volume delivered as reported in the MoFR Harvest Billing System (HBS)

REVISIONS:

No revisions are suggested for this indicator or objective

2.40 WASTE

Indicator Statement	Target Statement				
The percentage of blocks and roads assessed in which avoidable waste and residue levels are within the target range	Annually, 100% of cutblocks and roads will fall within the target avoidable waste and residue range				
SFM Objective: We will ensure that harvest levels do not adversely impact the long term harvest level.					

STATUS AND COMMENTS:

All blocks where harvesting was completed in 2007 were within the target avoidable waste and residue range.

REVISIONS:

No revisions are suggested for this indicator or objective

2.41 HARVEST METHOD

Indicator Statement	Target Statement				
Proportion (%) of coniferous harvesting area completed with conventional ground based methods by 5 year cut control period	A maximum of 81% of the coniferous harvesting area (ha) will be completed with conventional ground based methods by 5 year cut control period				
SFM Objective: We will ensure that harvest levels do not adversely impact the long-term harvest level.					

STATUS AND COMMENTS:

The following Figure 15 shows the status over the current cut control period 2007 – 2011. The status is that over this period 80% of the harvesting on has been completed using conventional ground based methods, with the remainder 20% being conducted with cable or aerial methods. 2007 is the beginning of the new cut control period and the target is to be met at the end of 2011. Figure 15 shows the progress towards meeting this target.

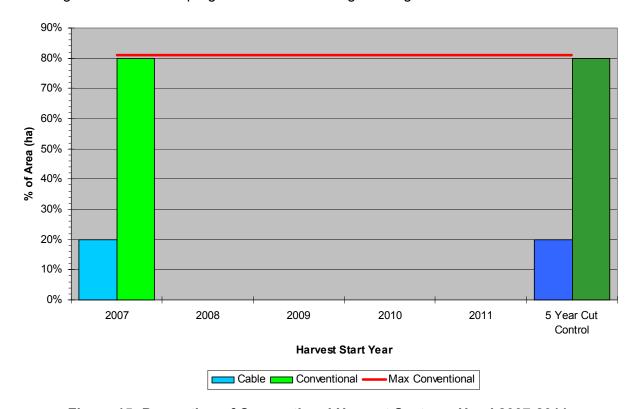


Figure 15: Proportion of Conventional Harvest Systems Used 2007-2011

REVISIONS:

No revisions are suggested for this indicator or objective

2.42 SUMMER AND FALL DELIVERIES

Indicator Statement	Target Statement			
Volume (m³) of timber delivered annually to Canfor Chetwynd mill between May 1st and October 31st	Minimum of 150,000 m ³ coniferous delivered to Canfor Chetwynd mill			
SFM Objective: We will maintain a local, up to date timber processing facility and infrastructure.				

STATUS AND COMMENTS:

In 2007 there were 174,509 m³ of timber delivered from TFL 48 to the Canfor Chetwynd sawmill.

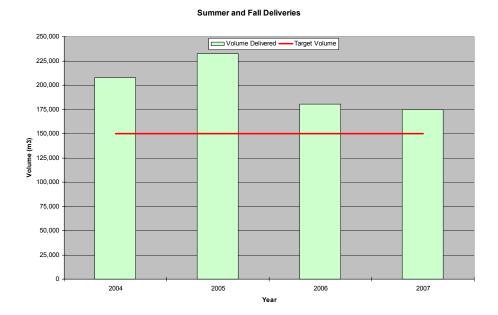


Figure 16: Summer and Fall Deliveries

No revisions are suggested for this indicator or objective.

2.43 LOCAL EMPLOYMENT

Indicator Statement	Target Statement			
The proportion of dollars spent on local versus non-local contractors	A 5 year rolling average of 65% of local vs. non-local contractors and an annual minimum of 50% local versus non-local			
SFM Objective : We will ensure local communities and contractors have the opportunity to share in benefits such as jobs, contracts and sales.				

STATUS AND COMMENTS:

See Figure 17 for current status of this indicator. In 2006, not including stumpage, Canfor paid \$46.4MM to all vendors. Local vendors or contractors were paid \$38.7MM or 83% of total expenditures. The five-year rolling average from 2003 through 2007 saw 82% of expenditures made to local vendors or contractors.

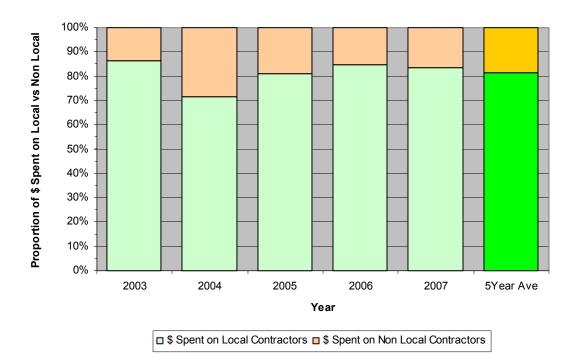


Figure 17: Proportion of Dollars Spent on Local vs Non-Local Contractors

No revisions are suggested for this indicator or objective

2.44 COMMUNITY DONATIONS

Indicator Statement	Target Statement
Canfor community donations per year	A minimum of \$7,000/year will be made available for community donations
SFM Objective: We will ensure contributions and benefits to the community (ie. donations, training).	

STATUS AND COMMENTS:

In 2007 Canfor made available a minimum of \$7,000 for community donations of which \$2,200 was distributed to 11 different organizations in Chetwynd, and Hudson's Hope. The full distribution was not made due to the extreme financial situation faced by the forest industry in 2007.

REVISIONS:

Recommend that target be changed by adding the following at the end of the target statement..."when the company is profitable".

2.45 CONSISTENCY WITH THIRD PARTY ACTION PLANS

Indicator Statement	Target Statement	
Consistency with mutually agreed upon action plans for guides, trappers, range tenure holders, and other non-timber commercial interests	Operations 100% consistent with the resultant action plans	
SFM Objective: To help ensure distribution of benefits, cooperative relationships, across local stakeholders and First Nations.		

STATUS AND COMMENTS:

In 2007 there were no specific third party action plans developed.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.46 KNOWN VALUES AND USES ADDRESSED IN OPERATIONAL PLANNING

Indicator Statement	Target Statement	
Percentage of known traditional site-specific aboriginal values and uses identified during SFMP, FDP, FSP, or PMP referrals addressed in operational plans	100% of known traditional site-specific aboriginal values and uses identified during SFMP, FDP, FSP, or PMP referrals will be addressed in operational plans	
SFM Objective: We will recognize and respect Treaty 8 rights.		

STATUS AND COMMENTS:

In 2007 there were no known traditional site-specific aboriginal values and uses identified that were required to be addressed in operational plans.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.47 CONFORMANCE TO ELEMENTS PERTINENT TO TREATY RIGHTS

Indicator Statement	Target Statement
% conformance to SFM elements pertinent to treaty rights (i.e., hunting, fishing and trapping) defined in Treaty 8	100% conformance to the SFM indicators and targets of the SFM Elements pertinent to sustaining hunting, fishing and trapping, as follows:
	• Element 1.1 Ecosystem Diversity (Indicators 3.1, 3.2, 3.3, and 3.4), and Element 1.2 Species Diversity (Habitat Elements) Indicators (3.5, 3.4, 3.6, 3.7, 3.8, 3.9 and 3.10), and
	• Element 3.2 Water Quality and Quantity Indicators (3.26, 3.27, 3.28, 3.29, and 3.30)
SFM Objective: We will recognize and respect Treaty 8 rights, and respect known traditional aboriginal forest values and uses.	

STATUS AND COMMENTS:

In 2007 Canfor did not meet the target for 100% of the indicators listed for this indicator. See Section 2.26 Spills Entering Waterbodies for a detailed description of the non-conformance.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.48 LRMP IMPLEMENTATION MEETINGS ATTENDED BY CANFOR

Indicator Statement	Target Statement	
Proportion of LRMP implementation or update meetings attended by Canfor and BCTS	100% of meetings will be attended by Canfor and BCTS and information provided as required	
SFM Objective: We will support land use processes including the LRMP implementation.		

STATUS AND COMMENTS:

There was one LRMP meeting held in 2007, which was attended by both Canfor and BCTS.

Table 27: LRMP Meetings

Year	Number of LRMP Meetings	Number Attended by Canfor/BCTS
1999	2	2
2000	4	4
2001	4	4
2002	1	1
2003	0	0
2004	1	1
2005	1	1
2006	0	0
2007	1	1

REVISIONS:

No revisions are suggested for this indicator or objective.

2.49 PUBLIC ADVISORY COMMITTEE

Indicator Statement	Target Statement
Public Advisory Committee	We will establish and maintain Public Advisory Committee and hold at least one meeting annually
SFM Objective: We will have an effective and satisfactory process that enables public participation of stakeholders and First Nations.	

STATUS AND COMMENTS:

There was one PAC meeting held in 2007 and one field trip. The purpose of this meeting was to review the annual report monitor the implantation of SFMP 4. The field trip focused on the following:

- Mountain Pine Beetle impacts, and management strategies
- Managed stand monitoring program for previously harvested and reforested areas
- Stand level retention strategies.
- Water Quality Concern Ratings assessments

Number of PAC Meetings 2000 8 2001 3 2002 3 (+1 field trip) 2003 1 4 2004 2005 5 2006 1 2007 1 (+ 1 field trip)

Table 28: Public Advisory Committee Meetings

REVISIONS:

No revisions are suggested for this indicator or objective.

2.50 PUBLIC ADVISORY COMMITTEE TERMS OF REFERENCE

Indicator Statement	Target Statement	
Terms of reference (TOR) for the Chetwynd TFL 48 DFA public participation process	Obtain PAC acceptance of TOR for public participation process bi-annually (every 2 years)	
SFM Objective: We will have an effective and satisfactory process that enables public participation of stakeholders and First Nations.		

STATUS AND COMMENTS:

The first Terms of Reference (TOR) was agreed to with the PAC on March 7, 2000. The last review was on August 31, 2006. Minor changes have been made to the ToR between 2000 and 2006. The most significant changes were in 2006 with the addition of BCTS as a joint registrant on the DFA. A minor change to the ToR was made in 2007 concerning the number of PAC meetings to be held annually. The next scheduled review of the TOR is due in 2008.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.51 OPEN HOUSES

Indicator Statement	Target Statement	
Number of open houses held to solicit broad public input	We will hold a minimum of one annual open house to review SFM plan performance.	
SFM Objective: We will have an effective and satisfactory process that enables public participation of stakeholders and First Nations.		

REVISIONS:

Due to continued poor attendance at open houses held between 2000 and 2005 and after being reviewed with the Public Advisory Committee it was agreed that this indicator would be discontinued. There will be no further requirement or reporting of this indicator going forward.

2.52 RESPONSE TO PUBLIC INQUIRIES

Indicator Statement	Target Statement
Percentage of timely responses to public inquiries	We will respond to 100% of public inquiries concerning our forestry practices within one month of receipt and provide summary to PAC annually
SFM Objective: We will have an effective and satisfactory process that enables public participation of stakeholders and First Nations.	

STATUS AND COMMENTS:

In 2007 there were four public inquiries and 100% of these were responded to within one month of receipt. The summary of inquires and Canfor's responses are listed in Table 29.

Table 29: Summary of Public Inquiries and Response for 2007

Issue Identifier	Issue Description	Issue Date	Response	Response Date
	Contractor left substantial garbage at campsite, public complaint about the mess.	04-Jul- 2007	Contractor instructed to return to the site and cleaned thoroughly. They have changed their process to ensure it does not re-occur. The public member was informed of the corrective action.	12-Jul-2007
	Request for information concerning MPB and treatment activities on behalf of Moberly Lake Watershed interest group.	11-Jul- 2007	Replied to email with requested information	12-Jul-2007
	Request from District of Hudsons' Hope for information on TFL 48 AAC Determination	16-Jul- 2007	Attended HH council meeting along with MoFR staff and provided requested information as in attached presentation. No additional follow up actions for Canfor.	13-Aug- 2007
	Request to view TFL 48 Management Plan	21-Sep- 2007	Met with individual and discussed Management Plan objectives and Patch size strategies. Reviewed 1960 to 2020 scenario as part of basis for rationale. Individual indicated that moose, elk, and marten were only species worth managing for. Individual also indicated that we should be harvesting beetle areas in lager blocks and faster.	21-Sep- 2007

REVISIONS:

No revisions are suggested for this indicator or objective.

2.53 DISTRIBUTION/ACCESS TO SFM PLAN, ANNUAL REPORTS AND AUDIT RESULTS

Indicator Statement	Target Statement	
Distribution/access to SFM Plan, Annual Reports and Audit Results	All SFM plans, annual reports, and audit reports will be made available during open houses, on Canfor's website (http://www.canfor.com/sustainability/certification/csa.asp), others upon request and distributed to PAC members and advisors	
SFM Objective: We will provide information to public and First Nations about forest ecosystem values and management.		

STATUS AND COMMENTS:

The SFM plan for TFL 48 is available on Canfor's website at the following location (http://www.canfor.com/sustainability/certification/csa.asp). Also included are copies of annual reports and summaries of the 3rd party external audits completed on TFL 48. Copies of the above have been circulated to members of the PAC and advisors as well.

The 2007 annual report is posted at essentially the same time as distribution to the Public Advisory Committee.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.54 SPATIAL FORECASTING AND ANALYSIS

Indicator Statement	Target Statement
Spatial forecasting and analysis models	We will use spatial forecasting and analysis models to develop strategic SFM analysis and rotation length plans for SFMP 4
SFM Objective: We will improve and apply knowledge of forest ecosystems, values and management.	

STATUS AND COMMENTS:

Canfor has chosen to use the Remsoft Spatial Planning System (Woodstock v3.2, Spatial Woodstock and Stanley v5) for the timber supply analysis completed in support of this SFM plan and the AAC determination. Next reporting will be done in conjunction with the next timber supply analysis scheduled for 2010.

REVISIONS:

No revisions are suggested for this indicator or objective.

2.55 CURRENCY OF VEGETATION RESOURCE INVENTORY

Indicator Statement	Target Statement
Currency of vegetation inventory	We will use up-to-date vegetation inventory
SFM Objective: We will improve and apply knowledge of forest ecosystems, values and management.	

STATUS AND COMMENTS:

Phase I for TFL 48 was completed in 2000 and Phase II including Net Volume Adjustment Factoring (NVAF) was completed in 2004. The VRI was updated to account for activities and depletion to the end of 2004 due to harvesting, road construction and uses by other industrial users. Ages, heights and volumes were projected to 2005. This is the information that formed the basis for the analysis of this SFM plan and the associated timber supply analysis.

Height, age, and net merchantable volume were adjusted as a result of the Phase II and NVAF sampling completed on TFL 48. TSR volume is defined as the net merchantable volume at the 12.5cm+ utilization level in lodgepole pine leading stands and the 17.5cm+ level in all other stands. After adjustment, the average height increased by 5%, age decreased by 7% and TSR volume increase by 34%. The TSR volume increased by 18% in the high priority sample areas (those mature areas most likely to contribute to the timber harvesting land base) (JS Thrower & Associates 2005).

REVISIONS:

No revisions are suggested for this indicator or objective.